基于会话的个性化推荐与递归神经网络

Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, P. Cremonesi
{"title":"基于会话的个性化推荐与递归神经网络","authors":"Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, P. Cremonesi","doi":"10.1145/3109859.3109896","DOIUrl":null,"url":null,"abstract":"Session-based recommendations are highly relevant in many modern on-line services (e.g. e-commerce, video streaming) and recommendation settings. Recently, Recurrent Neural Networks have been shown to perform very well in session-based settings. While in many session-based recommendation domains user identifiers are hard to come by, there are also domains in which user profiles are readily available. We propose a seamless way to personalize RNN models with cross-session information transfer and devise a Hierarchical RNN model that relays end evolves latent hidden states of the RNNs across user sessions. Results on two industry datasets show large improvements over the session-only RNNs.","PeriodicalId":417173,"journal":{"name":"Proceedings of the Eleventh ACM Conference on Recommender Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"533","resultStr":"{\"title\":\"Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks\",\"authors\":\"Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, P. Cremonesi\",\"doi\":\"10.1145/3109859.3109896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Session-based recommendations are highly relevant in many modern on-line services (e.g. e-commerce, video streaming) and recommendation settings. Recently, Recurrent Neural Networks have been shown to perform very well in session-based settings. While in many session-based recommendation domains user identifiers are hard to come by, there are also domains in which user profiles are readily available. We propose a seamless way to personalize RNN models with cross-session information transfer and devise a Hierarchical RNN model that relays end evolves latent hidden states of the RNNs across user sessions. Results on two industry datasets show large improvements over the session-only RNNs.\",\"PeriodicalId\":417173,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM Conference on Recommender Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"533\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3109859.3109896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3109859.3109896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 533

摘要

基于会话的推荐在许多现代在线服务(如电子商务、视频流)和推荐设置中高度相关。最近,递归神经网络在基于会话的设置中表现得非常好。虽然在许多基于会话的推荐领域中很难获得用户标识符,但也有用户配置文件很容易获得的领域。我们提出了一种跨会话信息传输的无缝个性化RNN模型,并设计了一种分层RNN模型,该模型在用户会话中中继RNN的最终进化潜在隐藏状态。在两个行业数据集上的结果显示,与仅会话的rnn相比,有很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks
Session-based recommendations are highly relevant in many modern on-line services (e.g. e-commerce, video streaming) and recommendation settings. Recently, Recurrent Neural Networks have been shown to perform very well in session-based settings. While in many session-based recommendation domains user identifiers are hard to come by, there are also domains in which user profiles are readily available. We propose a seamless way to personalize RNN models with cross-session information transfer and devise a Hierarchical RNN model that relays end evolves latent hidden states of the RNNs across user sessions. Results on two industry datasets show large improvements over the session-only RNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信