语义图像分割的无监督多模态特征学习

Deli Pei, Huaping Liu, Yulong Liu, F. Sun
{"title":"语义图像分割的无监督多模态特征学习","authors":"Deli Pei, Huaping Liu, Yulong Liu, F. Sun","doi":"10.1109/IJCNN.2013.6706748","DOIUrl":null,"url":null,"abstract":"In this paper, we address the semantic segmentation problem using single-layer networks. This network is used for unsupervised feature learning for the available RGB image and the depth image. A significant contribution of the proposed approach is that the dictionary is selected from the existing samples using the L2, 1 optimization. Such a dictionary can capture more meaningful representative samples and exploit intrinsic correlation between features from different modalities. The experimental results on the public NYU dataset show that this strategy dramatically improves the classification performance, compared with existing dictionary learning approach. In addition, we perform experimental verification using the practical robot platforms and show promising results.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Unsupervised multimodal feature learning for semantic image segmentation\",\"authors\":\"Deli Pei, Huaping Liu, Yulong Liu, F. Sun\",\"doi\":\"10.1109/IJCNN.2013.6706748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the semantic segmentation problem using single-layer networks. This network is used for unsupervised feature learning for the available RGB image and the depth image. A significant contribution of the proposed approach is that the dictionary is selected from the existing samples using the L2, 1 optimization. Such a dictionary can capture more meaningful representative samples and exploit intrinsic correlation between features from different modalities. The experimental results on the public NYU dataset show that this strategy dramatically improves the classification performance, compared with existing dictionary learning approach. In addition, we perform experimental verification using the practical robot platforms and show promising results.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们使用单层网络来解决语义分割问题。该网络用于可用RGB图像和深度图像的无监督特征学习。该方法的一个重要贡献是使用L2, 1优化从现有样本中选择字典。这样的词典可以捕获更多有意义的代表性样本,并利用不同模态特征之间的内在相关性。在NYU公共数据集上的实验结果表明,与现有的字典学习方法相比,该策略显著提高了分类性能。此外,我们还利用实际的机器人平台进行了实验验证,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised multimodal feature learning for semantic image segmentation
In this paper, we address the semantic segmentation problem using single-layer networks. This network is used for unsupervised feature learning for the available RGB image and the depth image. A significant contribution of the proposed approach is that the dictionary is selected from the existing samples using the L2, 1 optimization. Such a dictionary can capture more meaningful representative samples and exploit intrinsic correlation between features from different modalities. The experimental results on the public NYU dataset show that this strategy dramatically improves the classification performance, compared with existing dictionary learning approach. In addition, we perform experimental verification using the practical robot platforms and show promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信