{"title":"灵活的文本输入与一个小的输入手势集","authors":"Dylan Gaines, Mackenzie M Baker, K. Vertanen","doi":"10.1145/3581641.3584077","DOIUrl":null,"url":null,"abstract":"In many situations, it may be impractical or impossible to enter text by selecting precise locations on a physical or touchscreen keyboard. We present an ambiguous keyboard with four character groups that has potential applications for eyes-free text entry, as well as text entry using a single switch or a brain-computer interface. We develop a procedure for optimizing these character groupings based on a disambiguation algorithm that leverages a long-span language model. We produce both alphabetically-constrained and unconstrained character groups in an offline optimization experiment and compare them in a longitudinal user study. Our results did not show a significant difference between the constrained and unconstrained character groups after four hours of practice. As expected, participants had significantly more errors with the unconstrained groups in the first session, suggesting a higher barrier to learning the technique. We therefore recommend the alphabetically-constrained character groups, where participants were able to achieve an average entry rate of 12.0 words per minute with a 2.03% character error rate using a single hand and with no visual feedback.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlexType: Flexible Text Input with a Small Set of Input Gestures\",\"authors\":\"Dylan Gaines, Mackenzie M Baker, K. Vertanen\",\"doi\":\"10.1145/3581641.3584077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many situations, it may be impractical or impossible to enter text by selecting precise locations on a physical or touchscreen keyboard. We present an ambiguous keyboard with four character groups that has potential applications for eyes-free text entry, as well as text entry using a single switch or a brain-computer interface. We develop a procedure for optimizing these character groupings based on a disambiguation algorithm that leverages a long-span language model. We produce both alphabetically-constrained and unconstrained character groups in an offline optimization experiment and compare them in a longitudinal user study. Our results did not show a significant difference between the constrained and unconstrained character groups after four hours of practice. As expected, participants had significantly more errors with the unconstrained groups in the first session, suggesting a higher barrier to learning the technique. We therefore recommend the alphabetically-constrained character groups, where participants were able to achieve an average entry rate of 12.0 words per minute with a 2.03% character error rate using a single hand and with no visual feedback.\",\"PeriodicalId\":118159,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581641.3584077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581641.3584077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FlexType: Flexible Text Input with a Small Set of Input Gestures
In many situations, it may be impractical or impossible to enter text by selecting precise locations on a physical or touchscreen keyboard. We present an ambiguous keyboard with four character groups that has potential applications for eyes-free text entry, as well as text entry using a single switch or a brain-computer interface. We develop a procedure for optimizing these character groupings based on a disambiguation algorithm that leverages a long-span language model. We produce both alphabetically-constrained and unconstrained character groups in an offline optimization experiment and compare them in a longitudinal user study. Our results did not show a significant difference between the constrained and unconstrained character groups after four hours of practice. As expected, participants had significantly more errors with the unconstrained groups in the first session, suggesting a higher barrier to learning the technique. We therefore recommend the alphabetically-constrained character groups, where participants were able to achieve an average entry rate of 12.0 words per minute with a 2.03% character error rate using a single hand and with no visual feedback.