用于低功耗应用的海上运动电能发生器

C. Viñolo, D. Toma, A. Manuel, J. del Río
{"title":"用于低功耗应用的海上运动电能发生器","authors":"C. Viñolo, D. Toma, A. Manuel, J. del Río","doi":"10.1109/OCEANS-BERGEN.2013.6607986","DOIUrl":null,"url":null,"abstract":"The main problematic about electronic systems deployed in the sea for long periods of time, is to find a feasible way to supply them with the necessary amount of power and no direct supervision. In this paper a new idea is proposed and studied to supply deep sea low-consumption devices using low-cost disk piezoelectric elements. These piezoelectric components, together with a horizontal balance-like physical pendulum, create an electrical power generator that harvests the mechanical energy brought by the sea movements, preferably from the heave and pitch motion that sea waves induce in a moored-floating body as might be a buoy. The main purpose of this system is to unrelate the rate of impacts to the piezoelectric material from its natural oscillation frequency, making it viable to harvest energy from a slow motion environment such as the sea. Equations relating the energy extraction are presented and different experimentations are worked out to characterize the piezo elements. Finally a prototype with a proposed electronic harvesting system is built and tested in a real medium, showing the results before concluding the article.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Sea motion electrical energy generator for low-power applications\",\"authors\":\"C. Viñolo, D. Toma, A. Manuel, J. del Río\",\"doi\":\"10.1109/OCEANS-BERGEN.2013.6607986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main problematic about electronic systems deployed in the sea for long periods of time, is to find a feasible way to supply them with the necessary amount of power and no direct supervision. In this paper a new idea is proposed and studied to supply deep sea low-consumption devices using low-cost disk piezoelectric elements. These piezoelectric components, together with a horizontal balance-like physical pendulum, create an electrical power generator that harvests the mechanical energy brought by the sea movements, preferably from the heave and pitch motion that sea waves induce in a moored-floating body as might be a buoy. The main purpose of this system is to unrelate the rate of impacts to the piezoelectric material from its natural oscillation frequency, making it viable to harvest energy from a slow motion environment such as the sea. Equations relating the energy extraction are presented and different experimentations are worked out to characterize the piezo elements. Finally a prototype with a proposed electronic harvesting system is built and tested in a real medium, showing the results before concluding the article.\",\"PeriodicalId\":224246,\"journal\":{\"name\":\"2013 MTS/IEEE OCEANS - Bergen\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 MTS/IEEE OCEANS - Bergen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS-BERGEN.2013.6607986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6607986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

长期部署在海上的电子系统的主要问题是,如何找到一种可行的方法来为它们提供必要的电力,同时又不受直接监督。本文提出并研究了一种利用低成本圆盘压电元件供应深海低耗器件的新思路。这些压电元件与一个类似水平平衡的物理钟摆一起,创造了一个发电机,可以收集海浪运动带来的机械能,最好是海浪在一个系泊的漂浮体(可能是浮标)中引起的起伏和俯仰度运动。该系统的主要目的是将冲击频率与压电材料的自然振荡频率分离开来,使其能够从缓慢运动的环境(如海洋)中获取能量。给出了能量提取的相关方程,并设计了不同的实验来表征压电元件。最后建立了一个带有所提出的电子采集系统的原型,并在真实介质中进行了测试,在结束本文之前展示了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sea motion electrical energy generator for low-power applications
The main problematic about electronic systems deployed in the sea for long periods of time, is to find a feasible way to supply them with the necessary amount of power and no direct supervision. In this paper a new idea is proposed and studied to supply deep sea low-consumption devices using low-cost disk piezoelectric elements. These piezoelectric components, together with a horizontal balance-like physical pendulum, create an electrical power generator that harvests the mechanical energy brought by the sea movements, preferably from the heave and pitch motion that sea waves induce in a moored-floating body as might be a buoy. The main purpose of this system is to unrelate the rate of impacts to the piezoelectric material from its natural oscillation frequency, making it viable to harvest energy from a slow motion environment such as the sea. Equations relating the energy extraction are presented and different experimentations are worked out to characterize the piezo elements. Finally a prototype with a proposed electronic harvesting system is built and tested in a real medium, showing the results before concluding the article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信