正交范围查询的数据结构

G. S. Lueker
{"title":"正交范围查询的数据结构","authors":"G. S. Lueker","doi":"10.1109/SFCS.1978.1","DOIUrl":null,"url":null,"abstract":"Given a set of points in a d-dimensional space, an orthogonal range query is a request for the number of points in a specified d-dimensional box. We present a data structure and algorithm which enable one to insert and delete points and to perform orthogonal range queries. The worstcase time complexity for n operations is O(n logd n); the space usea is O(n logd-1 n). (O-notation here is with respect to n; the constant is allowed to depend on d.) Next we briefly discuss decision tree bounds on the complexity of orthogonal range queries. We show that a decision tree of height O(dn log n) (Where the implied constant does not depend on d or n) can be constructed to process n operations in d dimensions. This suggests that the standard decision tree model will not provide a useful method for investigating the complexity of such problems.","PeriodicalId":346837,"journal":{"name":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"227","resultStr":"{\"title\":\"A data structure for orthogonal range queries\",\"authors\":\"G. S. Lueker\",\"doi\":\"10.1109/SFCS.1978.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of points in a d-dimensional space, an orthogonal range query is a request for the number of points in a specified d-dimensional box. We present a data structure and algorithm which enable one to insert and delete points and to perform orthogonal range queries. The worstcase time complexity for n operations is O(n logd n); the space usea is O(n logd-1 n). (O-notation here is with respect to n; the constant is allowed to depend on d.) Next we briefly discuss decision tree bounds on the complexity of orthogonal range queries. We show that a decision tree of height O(dn log n) (Where the implied constant does not depend on d or n) can be constructed to process n operations in d dimensions. This suggests that the standard decision tree model will not provide a useful method for investigating the complexity of such problems.\",\"PeriodicalId\":346837,\"journal\":{\"name\":\"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"227\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1978.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1978.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 227

摘要

给定d维空间中的一组点,正交范围查询是对指定d维框中点的数量的请求。我们提出了一种数据结构和算法,使人们能够插入和删除点,并执行正交范围查询。n个操作的最坏情况下的时间复杂度是O(n logn);空间占用是O(n log - 1n)这里的O符号是关于n的;允许常数依赖于d。)接下来,我们简要地讨论了正交范围查询复杂性的决策树界。我们证明了可以构造一个高度为O(dn log n)的决策树(其中隐含常数不依赖于d或n)来处理d维中的n个操作。这表明标准的决策树模型不会为研究此类问题的复杂性提供有用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data structure for orthogonal range queries
Given a set of points in a d-dimensional space, an orthogonal range query is a request for the number of points in a specified d-dimensional box. We present a data structure and algorithm which enable one to insert and delete points and to perform orthogonal range queries. The worstcase time complexity for n operations is O(n logd n); the space usea is O(n logd-1 n). (O-notation here is with respect to n; the constant is allowed to depend on d.) Next we briefly discuss decision tree bounds on the complexity of orthogonal range queries. We show that a decision tree of height O(dn log n) (Where the implied constant does not depend on d or n) can be constructed to process n operations in d dimensions. This suggests that the standard decision tree model will not provide a useful method for investigating the complexity of such problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信