子空间分析在人脸识别中的比较

Jian Li, S. Zhou, C. Shekhar
{"title":"子空间分析在人脸识别中的比较","authors":"Jian Li, S. Zhou, C. Shekhar","doi":"10.1109/ICASSP.2003.1199122","DOIUrl":null,"url":null,"abstract":"We report the results of a comparative study on subspace analysis methods for face recognition. In particular, we have studied four different subspace representations and their 'kernelized' versions if available. They include both unsupervised methods such as principal component analysis (PCA) and independent component analysis (ICA), and supervised methods such as Fisher discriminant analysis (FDA) and probabilistic PCA (PPCA) used in a discriminative manner. The 'kernelized' versions of these methods provide subspaces of high-dimensional feature spaces induced by non-linear mappings. To test the effectiveness of these subspace representations, we experiment on two databases with three typical variations of face images, i.e, pose, illumination and facial expression changes. The comparison of these methods applied to different variations in face images offers a comprehensive view of all the subspace methods currently used in face recognition.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A comparison of subspace analysis for face recognition\",\"authors\":\"Jian Li, S. Zhou, C. Shekhar\",\"doi\":\"10.1109/ICASSP.2003.1199122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the results of a comparative study on subspace analysis methods for face recognition. In particular, we have studied four different subspace representations and their 'kernelized' versions if available. They include both unsupervised methods such as principal component analysis (PCA) and independent component analysis (ICA), and supervised methods such as Fisher discriminant analysis (FDA) and probabilistic PCA (PPCA) used in a discriminative manner. The 'kernelized' versions of these methods provide subspaces of high-dimensional feature spaces induced by non-linear mappings. To test the effectiveness of these subspace representations, we experiment on two databases with three typical variations of face images, i.e, pose, illumination and facial expression changes. The comparison of these methods applied to different variations in face images offers a comprehensive view of all the subspace methods currently used in face recognition.\",\"PeriodicalId\":104473,\"journal\":{\"name\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2003.1199122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1199122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们报告了一种用于人脸识别的子空间分析方法的比较研究结果。特别是,我们研究了四种不同的子空间表示及其“核化”版本(如果可用)。它们包括非监督方法,如主成分分析(PCA)和独立成分分析(ICA),以及监督方法,如Fisher判别分析(FDA)和概率PCA (PPCA),以判别方式使用。这些方法的“核化”版本提供了由非线性映射引起的高维特征空间的子空间。为了测试这些子空间表示的有效性,我们在两个数据库上进行了三种典型的人脸图像变化,即姿态、光照和面部表情变化。这些方法应用于不同变化的人脸图像的比较提供了一个全面的视图,目前所有的子空间方法用于人脸识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of subspace analysis for face recognition
We report the results of a comparative study on subspace analysis methods for face recognition. In particular, we have studied four different subspace representations and their 'kernelized' versions if available. They include both unsupervised methods such as principal component analysis (PCA) and independent component analysis (ICA), and supervised methods such as Fisher discriminant analysis (FDA) and probabilistic PCA (PPCA) used in a discriminative manner. The 'kernelized' versions of these methods provide subspaces of high-dimensional feature spaces induced by non-linear mappings. To test the effectiveness of these subspace representations, we experiment on two databases with three typical variations of face images, i.e, pose, illumination and facial expression changes. The comparison of these methods applied to different variations in face images offers a comprehensive view of all the subspace methods currently used in face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信