V. Moschou, M. Kotti, Emmanouil Benetos, Constantine Kotropoulos
{"title":"基于bic的说话人分割系统的系统比较","authors":"V. Moschou, M. Kotti, Emmanouil Benetos, Constantine Kotropoulos","doi":"10.1109/MMSP.2007.4412819","DOIUrl":null,"url":null,"abstract":"Unsupervised speaker change detection is addressed in this paper. Three speaker segmentation systems are examined. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic fusion scheme, and applies the Bayesian Information Criterion (BIC). The second system consists of three modules. In the first module, a second-order statistic-measure is extracted; the Euclidean distance and the T2 Hotelling statistic are applied sequentially in the second module; and BIC is utilized in the third module. The third system, first uses a metric-based approach, in order to detect potential speaker change points, and then the BIC criterion is applied to validate the previously detected change points. Experiments are carried out on a dataset, which is created by concatenating speakers from the TIMIT database. A systematic performance comparison among the three systems is carried out by means of one-way ANOVA method and post hoc Tukey's method.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"514 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Systematic comparison of BIC-based speaker segmentation systems\",\"authors\":\"V. Moschou, M. Kotti, Emmanouil Benetos, Constantine Kotropoulos\",\"doi\":\"10.1109/MMSP.2007.4412819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised speaker change detection is addressed in this paper. Three speaker segmentation systems are examined. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic fusion scheme, and applies the Bayesian Information Criterion (BIC). The second system consists of three modules. In the first module, a second-order statistic-measure is extracted; the Euclidean distance and the T2 Hotelling statistic are applied sequentially in the second module; and BIC is utilized in the third module. The third system, first uses a metric-based approach, in order to detect potential speaker change points, and then the BIC criterion is applied to validate the previously detected change points. Experiments are carried out on a dataset, which is created by concatenating speakers from the TIMIT database. A systematic performance comparison among the three systems is carried out by means of one-way ANOVA method and post hoc Tukey's method.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"514 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systematic comparison of BIC-based speaker segmentation systems
Unsupervised speaker change detection is addressed in this paper. Three speaker segmentation systems are examined. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic fusion scheme, and applies the Bayesian Information Criterion (BIC). The second system consists of three modules. In the first module, a second-order statistic-measure is extracted; the Euclidean distance and the T2 Hotelling statistic are applied sequentially in the second module; and BIC is utilized in the third module. The third system, first uses a metric-based approach, in order to detect potential speaker change points, and then the BIC criterion is applied to validate the previously detected change points. Experiments are carried out on a dataset, which is created by concatenating speakers from the TIMIT database. A systematic performance comparison among the three systems is carried out by means of one-way ANOVA method and post hoc Tukey's method.