{"title":"一种新的高光谱图像分类波段选择方法","authors":"Lin Lin, Shijin Li, Yuelong Zhu, Lizhong Xu","doi":"10.1109/CCPR.2009.5344106","DOIUrl":null,"url":null,"abstract":"To select a minimal and effective subset from a mass of bands is the key issue of the study on hyperspectral image classification. This paper put forwards a novel band selection algorithm, which combines mutual information-based grouping method and genetic algorithm. The proposed algorithm reduces the computation cost significantly, as well as keeps a better precision. In addition, resampling based on sequential clustering is employed to tackle the imbalanced data issue and improve the classification accuracy of minority classes. Experimental results on the Washington DC Mall data set validate the effectiveness and efficiency of the proposed algorithm.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Approach to Band Selection for Hyperspectral Image Classification\",\"authors\":\"Lin Lin, Shijin Li, Yuelong Zhu, Lizhong Xu\",\"doi\":\"10.1109/CCPR.2009.5344106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To select a minimal and effective subset from a mass of bands is the key issue of the study on hyperspectral image classification. This paper put forwards a novel band selection algorithm, which combines mutual information-based grouping method and genetic algorithm. The proposed algorithm reduces the computation cost significantly, as well as keeps a better precision. In addition, resampling based on sequential clustering is employed to tackle the imbalanced data issue and improve the classification accuracy of minority classes. Experimental results on the Washington DC Mall data set validate the effectiveness and efficiency of the proposed algorithm.\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5344106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Approach to Band Selection for Hyperspectral Image Classification
To select a minimal and effective subset from a mass of bands is the key issue of the study on hyperspectral image classification. This paper put forwards a novel band selection algorithm, which combines mutual information-based grouping method and genetic algorithm. The proposed algorithm reduces the computation cost significantly, as well as keeps a better precision. In addition, resampling based on sequential clustering is employed to tackle the imbalanced data issue and improve the classification accuracy of minority classes. Experimental results on the Washington DC Mall data set validate the effectiveness and efficiency of the proposed algorithm.