{"title":"齐次线性循环过程的渐近性质及其扰动","authors":"Alexandru Lazari","doi":"10.56415/basm.y2022.i2.p103","DOIUrl":null,"url":null,"abstract":"In this paper the impact of small perturbations on asymptotic evolution of homogeneous linear recurrent processes is investigated. Analytical methods for describing homogeneous linear recurrent systems, from convergence, periodicity and boundedness perspective, are presented. These methods are based on Jury Stability Criterion and the classification of the roots of minimal characteristic polynomial in relation to unit disc.","PeriodicalId":102242,"journal":{"name":"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Behavior of Homogeneous Linear Recurrent Processes and Their Perturbations\",\"authors\":\"Alexandru Lazari\",\"doi\":\"10.56415/basm.y2022.i2.p103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the impact of small perturbations on asymptotic evolution of homogeneous linear recurrent processes is investigated. Analytical methods for describing homogeneous linear recurrent systems, from convergence, periodicity and boundedness perspective, are presented. These methods are based on Jury Stability Criterion and the classification of the roots of minimal characteristic polynomial in relation to unit disc.\",\"PeriodicalId\":102242,\"journal\":{\"name\":\"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/basm.y2022.i2.p103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/basm.y2022.i2.p103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic Behavior of Homogeneous Linear Recurrent Processes and Their Perturbations
In this paper the impact of small perturbations on asymptotic evolution of homogeneous linear recurrent processes is investigated. Analytical methods for describing homogeneous linear recurrent systems, from convergence, periodicity and boundedness perspective, are presented. These methods are based on Jury Stability Criterion and the classification of the roots of minimal characteristic polynomial in relation to unit disc.