二进制BCH码的快速译码算法

W. Penzhorn
{"title":"二进制BCH码的快速译码算法","authors":"W. Penzhorn","doi":"10.1109/COMSIG.1993.365872","DOIUrl":null,"url":null,"abstract":"It is shown how to determine the error locator polynomial of a primitive, binary t-error correcting BCH code directly. Towards this end the set of t syndrome polynomial equations is transformed into an equivalent set of equations, by making use of the Buchberger (1985) algorithm for polynomial reduction. This results in the so-called reduced Grobner basis for a set of polynomial equations, and allows the direct solution of the error locator polynomial. For small number of errors this leads to a substantial reduction in decoding complexity.<<ETX>>","PeriodicalId":398160,"journal":{"name":"1993 IEEE South African Symposium on Communications and Signal Processing","volume":"2620 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A fast algorithm for the decoding of binary BCH codes\",\"authors\":\"W. Penzhorn\",\"doi\":\"10.1109/COMSIG.1993.365872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown how to determine the error locator polynomial of a primitive, binary t-error correcting BCH code directly. Towards this end the set of t syndrome polynomial equations is transformed into an equivalent set of equations, by making use of the Buchberger (1985) algorithm for polynomial reduction. This results in the so-called reduced Grobner basis for a set of polynomial equations, and allows the direct solution of the error locator polynomial. For small number of errors this leads to a substantial reduction in decoding complexity.<<ETX>>\",\"PeriodicalId\":398160,\"journal\":{\"name\":\"1993 IEEE South African Symposium on Communications and Signal Processing\",\"volume\":\"2620 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE South African Symposium on Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSIG.1993.365872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE South African Symposium on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1993.365872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

它显示了如何确定一个原始的错误定位多项式,二进制t-误差校正BCH代码直接。为此,利用Buchberger(1985)的多项式约简算法,将t综合征多项式方程组转换为等价方程组。这就产生了一组多项式方程的所谓简化格罗布纳基,并允许直接求解误差定位多项式。对于少量错误,这将导致解码复杂性的大幅降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast algorithm for the decoding of binary BCH codes
It is shown how to determine the error locator polynomial of a primitive, binary t-error correcting BCH code directly. Towards this end the set of t syndrome polynomial equations is transformed into an equivalent set of equations, by making use of the Buchberger (1985) algorithm for polynomial reduction. This results in the so-called reduced Grobner basis for a set of polynomial equations, and allows the direct solution of the error locator polynomial. For small number of errors this leads to a substantial reduction in decoding complexity.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信