Ramin Irani, Kamal Nasrollahi, Abhinav Dhall, T. Moeslund, Tom Gedeon
{"title":"用于双峰应力识别的热超像素","authors":"Ramin Irani, Kamal Nasrollahi, Abhinav Dhall, T. Moeslund, Tom Gedeon","doi":"10.1109/IPTA.2016.7821002","DOIUrl":null,"url":null,"abstract":"Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1], [2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress recognition is [3] which uses a feature level fusion of the two modalities. The features in [3] are extracted directly from pixel values. In this paper we show that extracting the features from super-pixels, followed by decision level fusion results in a system outperforming [3]. The experimental results on ANUstressDB database show that our system achieves 89% classification accuracy.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Thermal super-pixels for bimodal stress recognition\",\"authors\":\"Ramin Irani, Kamal Nasrollahi, Abhinav Dhall, T. Moeslund, Tom Gedeon\",\"doi\":\"10.1109/IPTA.2016.7821002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1], [2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress recognition is [3] which uses a feature level fusion of the two modalities. The features in [3] are extracted directly from pixel values. In this paper we show that extracting the features from super-pixels, followed by decision level fusion results in a system outperforming [3]. The experimental results on ANUstressDB database show that our system achieves 89% classification accuracy.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7821002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal super-pixels for bimodal stress recognition
Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1], [2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress recognition is [3] which uses a feature level fusion of the two modalities. The features in [3] are extracted directly from pixel values. In this paper we show that extracting the features from super-pixels, followed by decision level fusion results in a system outperforming [3]. The experimental results on ANUstressDB database show that our system achieves 89% classification accuracy.