数据驱动的电动汽车电池SOH预测

Gae-won You, Sangdo Park, Sunjae Lee
{"title":"数据驱动的电动汽车电池SOH预测","authors":"Gae-won You, Sangdo Park, Sunjae Lee","doi":"10.1109/ICCE.2015.7066533","DOIUrl":null,"url":null,"abstract":"As electric vehicles (EVs) have been popularized, research on battery management system (BMS) of EVs' core technology has considerably drawn attention. Among various functions of BMS, predicting state-of-health (SOH) that indexes batteries' aging is the most crucial to determine replacement time of the battery or to estimate driving mileage. This paper studies how to predict SOH in practical EV environments where the batteries are charged and discharged dynamically.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data-driven SOH prediction for EV batteries\",\"authors\":\"Gae-won You, Sangdo Park, Sunjae Lee\",\"doi\":\"10.1109/ICCE.2015.7066533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As electric vehicles (EVs) have been popularized, research on battery management system (BMS) of EVs' core technology has considerably drawn attention. Among various functions of BMS, predicting state-of-health (SOH) that indexes batteries' aging is the most crucial to determine replacement time of the battery or to estimate driving mileage. This paper studies how to predict SOH in practical EV environments where the batteries are charged and discharged dynamically.\",\"PeriodicalId\":169402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2015.7066533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着电动汽车的普及,作为电动汽车核心技术的电池管理系统(BMS)的研究备受关注。在BMS的众多功能中,以电池老化为指标的健康状态(SOH)预测是确定电池更换时间或行驶里程的关键。本文研究了电池动态充放电的电动汽车实际环境中SOH的预测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven SOH prediction for EV batteries
As electric vehicles (EVs) have been popularized, research on battery management system (BMS) of EVs' core technology has considerably drawn attention. Among various functions of BMS, predicting state-of-health (SOH) that indexes batteries' aging is the most crucial to determine replacement time of the battery or to estimate driving mileage. This paper studies how to predict SOH in practical EV environments where the batteries are charged and discharged dynamically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信