机器状态监测中缺陷分类的特征选择

A. Malhi, R. Gao
{"title":"机器状态监测中缺陷分类的特征选择","authors":"A. Malhi, R. Gao","doi":"10.1109/IMTC.2003.1208117","DOIUrl":null,"url":null,"abstract":"A M As the sensitivily of various parameters to a defect condition of a machine differs, it i s imperative to devise a feature selection scheme that selects the best parameters to maximize the accuracy of the &feet classification scheme A feature selection scheme based on principal component analysis (PCA) is proposed in this paper. A methodology was developed for bearing defect classificatwn using. neural newrks. The scheme has shown to provide more accurate defect classifcation with less parameter inputs than using all parameters initially considered relevant","PeriodicalId":135321,"journal":{"name":"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Feature selection for defect classification in machine condition monitoring\",\"authors\":\"A. Malhi, R. Gao\",\"doi\":\"10.1109/IMTC.2003.1208117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A M As the sensitivily of various parameters to a defect condition of a machine differs, it i s imperative to devise a feature selection scheme that selects the best parameters to maximize the accuracy of the &feet classification scheme A feature selection scheme based on principal component analysis (PCA) is proposed in this paper. A methodology was developed for bearing defect classificatwn using. neural newrks. The scheme has shown to provide more accurate defect classifcation with less parameter inputs than using all parameters initially considered relevant\",\"PeriodicalId\":135321,\"journal\":{\"name\":\"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.2003.1208117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2003.1208117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于各种参数对机器缺陷状态的敏感性不同,因此必须设计一种特征选择方案,以选择最佳参数,使分类方案的准确率最大化。本文提出了一种基于主成分分析(PCA)的特征选择方案。提出了一种用于轴承缺陷分类的方法。神经newrks。与使用所有最初认为相关的参数相比,该方案以更少的参数输入提供了更准确的缺陷分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection for defect classification in machine condition monitoring
A M As the sensitivily of various parameters to a defect condition of a machine differs, it i s imperative to devise a feature selection scheme that selects the best parameters to maximize the accuracy of the &feet classification scheme A feature selection scheme based on principal component analysis (PCA) is proposed in this paper. A methodology was developed for bearing defect classificatwn using. neural newrks. The scheme has shown to provide more accurate defect classifcation with less parameter inputs than using all parameters initially considered relevant
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信