基于拓扑优化的辅助折纸结构发现

A. Gillman, K. Fuchi, Alexander Cook, Alexander M. Pankonien, P. Buskohl
{"title":"基于拓扑优化的辅助折纸结构发现","authors":"A. Gillman, K. Fuchi, Alexander Cook, Alexander M. Pankonien, P. Buskohl","doi":"10.1115/DETC2018-85732","DOIUrl":null,"url":null,"abstract":"Origami, as it moves from an art to a scientifically useful technology, enables a rich design space given the numerous bifurcations that exist off the flat state. In this work, we utilize origami as a platform for design of auxetic metamaterials and employ topology optimization for the automated robust discovery of these structures. In particular, the mechanical analysis is performed with an efficient and accurate nonlinear truss element model that captures the geometric nonlinearities associated with origami folding, and modal analysis off the flat state enables access to the many bifurcating branches of folding. Here, objective functions are explored that target a desired in-plane Poisson’s ratio. The Miura-ori fold pattern, a commonly studied flat-foldable pattern, is considered as a verification study for the framework presented.","PeriodicalId":132121,"journal":{"name":"Volume 5B: 42nd Mechanisms and Robotics Conference","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Topology Optimization for Discovery of Auxetic Origami Structures\",\"authors\":\"A. Gillman, K. Fuchi, Alexander Cook, Alexander M. Pankonien, P. Buskohl\",\"doi\":\"10.1115/DETC2018-85732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Origami, as it moves from an art to a scientifically useful technology, enables a rich design space given the numerous bifurcations that exist off the flat state. In this work, we utilize origami as a platform for design of auxetic metamaterials and employ topology optimization for the automated robust discovery of these structures. In particular, the mechanical analysis is performed with an efficient and accurate nonlinear truss element model that captures the geometric nonlinearities associated with origami folding, and modal analysis off the flat state enables access to the many bifurcating branches of folding. Here, objective functions are explored that target a desired in-plane Poisson’s ratio. The Miura-ori fold pattern, a commonly studied flat-foldable pattern, is considered as a verification study for the framework presented.\",\"PeriodicalId\":132121,\"journal\":{\"name\":\"Volume 5B: 42nd Mechanisms and Robotics Conference\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5B: 42nd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 42nd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

折纸,随着它从一门艺术转变为一种科学上有用的技术,在平面状态下存在许多分叉的情况下,提供了丰富的设计空间。在这项工作中,我们利用折纸作为辅助超材料设计的平台,并采用拓扑优化来自动鲁棒发现这些结构。特别是,力学分析是用一个有效和准确的非线性桁架单元模型进行的,该模型捕获了与折纸折叠相关的几何非线性,而平面状态下的模态分析可以访问折叠的许多分支。在这里,我们探索了目标函数,以达到期望的平面内泊松比。Miura-ori折叠模式是一种常见的可平折模式,被认为是对所提出的框架的验证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology Optimization for Discovery of Auxetic Origami Structures
Origami, as it moves from an art to a scientifically useful technology, enables a rich design space given the numerous bifurcations that exist off the flat state. In this work, we utilize origami as a platform for design of auxetic metamaterials and employ topology optimization for the automated robust discovery of these structures. In particular, the mechanical analysis is performed with an efficient and accurate nonlinear truss element model that captures the geometric nonlinearities associated with origami folding, and modal analysis off the flat state enables access to the many bifurcating branches of folding. Here, objective functions are explored that target a desired in-plane Poisson’s ratio. The Miura-ori fold pattern, a commonly studied flat-foldable pattern, is considered as a verification study for the framework presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信