量子查询复杂度与半确定规划

H. Barnum, M. Saks, M. Szegedy
{"title":"量子查询复杂度与半确定规划","authors":"H. Barnum, M. Saks, M. Szegedy","doi":"10.1109/CCC.2003.1214419","DOIUrl":null,"url":null,"abstract":"We reformulate quantum query complexity in terms of inequalities and equations for a set of positive semidefinite matrices. Using the new formulation we: 1) show that the workspace of a quantum computer can be limited to at most n+k qubits (where n and k are the number of input and output bits respectively) without reducing the computational power of the model; 2) give an algorithm that on input the truth table of a partial Boolean function and an integer t runs in time polynomial in the size of the truth table and estimates, to any desired accuracy, the minimum probability of error that can be attained by a quantum query algorithm attempts to evaluate f in t queries; 3) use semidefinite programming duality to formulate a dual SDP P/spl circ/(f, t, /spl epsi/) that is feasible if and only if f cannot be evaluated within error /spl epsi/ by a t-step quantum query algorithm. Using this SDP, we derive a general lower bound for quantum query complexity that encompasses a lower bound method of Ambainis and its generalizations; 4) give an interpretation of a generalized form of branching in quantum computation.","PeriodicalId":286846,"journal":{"name":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Quantum query complexity and semi-definite programming\",\"authors\":\"H. Barnum, M. Saks, M. Szegedy\",\"doi\":\"10.1109/CCC.2003.1214419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reformulate quantum query complexity in terms of inequalities and equations for a set of positive semidefinite matrices. Using the new formulation we: 1) show that the workspace of a quantum computer can be limited to at most n+k qubits (where n and k are the number of input and output bits respectively) without reducing the computational power of the model; 2) give an algorithm that on input the truth table of a partial Boolean function and an integer t runs in time polynomial in the size of the truth table and estimates, to any desired accuracy, the minimum probability of error that can be attained by a quantum query algorithm attempts to evaluate f in t queries; 3) use semidefinite programming duality to formulate a dual SDP P/spl circ/(f, t, /spl epsi/) that is feasible if and only if f cannot be evaluated within error /spl epsi/ by a t-step quantum query algorithm. Using this SDP, we derive a general lower bound for quantum query complexity that encompasses a lower bound method of Ambainis and its generalizations; 4) give an interpretation of a generalized form of branching in quantum computation.\",\"PeriodicalId\":286846,\"journal\":{\"name\":\"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2003.1214419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2003.1214419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

我们用一组正半定矩阵的不等式和方程来重新表述量子查询复杂性。利用新的公式,我们:1)证明了在不降低模型计算能力的情况下,量子计算机的工作空间可以被限制在最多n+k个量子比特(其中n和k分别是输入和输出比特的数量);2)给出一种算法,该算法在输入一个部分布尔函数的真值表和一个整数t时以真值表的大小的时间多项式运行,并在任意精度下估计量子查询算法在t次查询中尝试求值f所能达到的最小误差概率;3)利用半定规划对偶性,构造了一个对偶SDP P/spl circ/(f, t, /spl epsi/),当且仅当f不能通过t步量子查询算法在error /spl epsi/内求值时可行。利用此SDP,我们推导出量子查询复杂度的一般下界,该下界包含Ambainis下界方法及其推广;给出了量子计算中分支的广义形式的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum query complexity and semi-definite programming
We reformulate quantum query complexity in terms of inequalities and equations for a set of positive semidefinite matrices. Using the new formulation we: 1) show that the workspace of a quantum computer can be limited to at most n+k qubits (where n and k are the number of input and output bits respectively) without reducing the computational power of the model; 2) give an algorithm that on input the truth table of a partial Boolean function and an integer t runs in time polynomial in the size of the truth table and estimates, to any desired accuracy, the minimum probability of error that can be attained by a quantum query algorithm attempts to evaluate f in t queries; 3) use semidefinite programming duality to formulate a dual SDP P/spl circ/(f, t, /spl epsi/) that is feasible if and only if f cannot be evaluated within error /spl epsi/ by a t-step quantum query algorithm. Using this SDP, we derive a general lower bound for quantum query complexity that encompasses a lower bound method of Ambainis and its generalizations; 4) give an interpretation of a generalized form of branching in quantum computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信