大规模分析文本信息

L. Cong, Tengyuan Liang, Baozhong Yang, Xiao Zhang
{"title":"大规模分析文本信息","authors":"L. Cong, Tengyuan Liang, Baozhong Yang, Xiao Zhang","doi":"10.2139/ssrn.3449822","DOIUrl":null,"url":null,"abstract":"We overview recent advances in textual analysis for social sciences. Count-based economic model, structured statistical tool, and plain-vanilla machine learning apparatus each has merits and limitations. To take a data-driven approach to capture complex linguistic structures while ensuring computational scalability and economic interpretability, a general framework for analyzing large-scale text-based data is needed. We discuss recent attempts combining the strengths of neural network language models such as word embedding and generative statistical modeling such as topic modeling. We also describe typical sources of texts, the applications of these methodologies to issues in finance and economics, and promising future directions.","PeriodicalId":352434,"journal":{"name":"Information for Efficient Decision Making","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Analyzing Textual Information at Scale\",\"authors\":\"L. Cong, Tengyuan Liang, Baozhong Yang, Xiao Zhang\",\"doi\":\"10.2139/ssrn.3449822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We overview recent advances in textual analysis for social sciences. Count-based economic model, structured statistical tool, and plain-vanilla machine learning apparatus each has merits and limitations. To take a data-driven approach to capture complex linguistic structures while ensuring computational scalability and economic interpretability, a general framework for analyzing large-scale text-based data is needed. We discuss recent attempts combining the strengths of neural network language models such as word embedding and generative statistical modeling such as topic modeling. We also describe typical sources of texts, the applications of these methodologies to issues in finance and economics, and promising future directions.\",\"PeriodicalId\":352434,\"journal\":{\"name\":\"Information for Efficient Decision Making\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information for Efficient Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3449822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information for Efficient Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3449822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们概述了社会科学文本分析的最新进展。基于计数的经济模型、结构化统计工具和普通机器学习设备各有优点和局限性。为了采用数据驱动的方法来捕获复杂的语言结构,同时确保计算可扩展性和经济可解释性,需要一个用于分析大规模基于文本的数据的通用框架。我们讨论了最近将神经网络语言模型(如词嵌入)和生成统计建模(如主题建模)的优势结合起来的尝试。我们还描述了文本的典型来源,这些方法在金融和经济问题上的应用,以及有希望的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Textual Information at Scale
We overview recent advances in textual analysis for social sciences. Count-based economic model, structured statistical tool, and plain-vanilla machine learning apparatus each has merits and limitations. To take a data-driven approach to capture complex linguistic structures while ensuring computational scalability and economic interpretability, a general framework for analyzing large-scale text-based data is needed. We discuss recent attempts combining the strengths of neural network language models such as word embedding and generative statistical modeling such as topic modeling. We also describe typical sources of texts, the applications of these methodologies to issues in finance and economics, and promising future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信