基于深度数据的形状识别的最小二乘技术

J. W. Gorman
{"title":"基于深度数据的形状识别的最小二乘技术","authors":"J. W. Gorman","doi":"10.1109/SSST.1988.17067","DOIUrl":null,"url":null,"abstract":"The use of spherical harmonic coefficients to describe objects represented by depth data is introduced. In a previous implementation, it was necessary to fit planar patches to the data before coefficient calculation, and numerical integration techniques were used in the computations. Here a least-squares implementation is presented that allows for coefficient calculation directly from the depth data without the use of planar patches or numerical integration. This technique is much faster, and experimental results are shown to demonstrate its effectiveness.<<ETX>>","PeriodicalId":345412,"journal":{"name":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A least-squares technique for shape recognition with depth data\",\"authors\":\"J. W. Gorman\",\"doi\":\"10.1109/SSST.1988.17067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of spherical harmonic coefficients to describe objects represented by depth data is introduced. In a previous implementation, it was necessary to fit planar patches to the data before coefficient calculation, and numerical integration techniques were used in the computations. Here a least-squares implementation is presented that allows for coefficient calculation directly from the depth data without the use of planar patches or numerical integration. This technique is much faster, and experimental results are shown to demonstrate its effectiveness.<<ETX>>\",\"PeriodicalId\":345412,\"journal\":{\"name\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1988.17067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1988.17067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了用球谐系数来描述由深度数据表示的目标。在以前的实现中,在系数计算之前需要对数据进行平面贴片拟合,并且在计算中使用数值积分技术。这里提出了一种最小二乘实现,允许直接从深度数据计算系数,而不使用平面补丁或数值积分。实验结果证明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A least-squares technique for shape recognition with depth data
The use of spherical harmonic coefficients to describe objects represented by depth data is introduced. In a previous implementation, it was necessary to fit planar patches to the data before coefficient calculation, and numerical integration techniques were used in the computations. Here a least-squares implementation is presented that allows for coefficient calculation directly from the depth data without the use of planar patches or numerical integration. This technique is much faster, and experimental results are shown to demonstrate its effectiveness.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信