作为抽象符号有限自动机的感染:形式模型与应用

M. Preda, Isabella Mastroeni
{"title":"作为抽象符号有限自动机的感染:形式模型与应用","authors":"M. Preda, Isabella Mastroeni","doi":"10.1109/SPRO.2015.18","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.","PeriodicalId":338591,"journal":{"name":"2015 IEEE/ACM 1st International Workshop on Software Protection","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infections as Abstract Symbolic Finite Automata: Formal Model and Applications\",\"authors\":\"M. Preda, Isabella Mastroeni\",\"doi\":\"10.1109/SPRO.2015.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.\",\"PeriodicalId\":338591,\"journal\":{\"name\":\"2015 IEEE/ACM 1st International Workshop on Software Protection\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 1st International Workshop on Software Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPRO.2015.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 1st International Workshop on Software Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPRO.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种基于机器学习的方法,用于构建基于符号有限状态自动机的受感染系统模型,该模型通过将系统的代码和语义组合在同一模型中并允许调整系统和恶意软件代码观察来表达恶意软件与环境之间的交互。此外,我们表明这种方法可能在恶意软件检测的背景下有几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infections as Abstract Symbolic Finite Automata: Formal Model and Applications
In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信