基于数学形态学的彩色人脸图像耳朵分割

E. Said, A. Abaza, H. Ammar
{"title":"基于数学形态学的彩色人脸图像耳朵分割","authors":"E. Said, A. Abaza, H. Ammar","doi":"10.1109/BSYM.2008.4655519","DOIUrl":null,"url":null,"abstract":"Fully automated image segmentation is an essential step for designing automated identification systems. In this paper, we address the problem of fully automated image segmentation in the context of ear biometrics. Our segmentation approach achieves more than 90% accuracy based on three different sets of 3750 facial images for 376 persons. We also present an approach for the automated evaluation of the quality of segmented images. Our approach is based on low computational-cost appearance-based features and learning based Bayesian classifier in order to determine whether the segmentation outcome is proper or improper segment. Experimental results for evaluating the segmentation outcomes of ear images indicate the benefits of the proposed scheme.","PeriodicalId":389538,"journal":{"name":"2008 Biometrics Symposium","volume":"609 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Ear segmentation in color facial images using mathematical morphology\",\"authors\":\"E. Said, A. Abaza, H. Ammar\",\"doi\":\"10.1109/BSYM.2008.4655519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully automated image segmentation is an essential step for designing automated identification systems. In this paper, we address the problem of fully automated image segmentation in the context of ear biometrics. Our segmentation approach achieves more than 90% accuracy based on three different sets of 3750 facial images for 376 persons. We also present an approach for the automated evaluation of the quality of segmented images. Our approach is based on low computational-cost appearance-based features and learning based Bayesian classifier in order to determine whether the segmentation outcome is proper or improper segment. Experimental results for evaluating the segmentation outcomes of ear images indicate the benefits of the proposed scheme.\",\"PeriodicalId\":389538,\"journal\":{\"name\":\"2008 Biometrics Symposium\",\"volume\":\"609 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Biometrics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSYM.2008.4655519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSYM.2008.4655519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

全自动图像分割是设计自动识别系统的重要步骤。在本文中,我们解决了在耳生物识别背景下的全自动图像分割问题。我们的分割方法在376人的3750张人脸图像的三组不同的基础上达到了90%以上的准确率。我们还提出了一种自动评估分割图像质量的方法。我们的方法是基于低计算成本的基于外观的特征和基于学习的贝叶斯分类器,以确定分割结果是正确的还是不正确的。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ear segmentation in color facial images using mathematical morphology
Fully automated image segmentation is an essential step for designing automated identification systems. In this paper, we address the problem of fully automated image segmentation in the context of ear biometrics. Our segmentation approach achieves more than 90% accuracy based on three different sets of 3750 facial images for 376 persons. We also present an approach for the automated evaluation of the quality of segmented images. Our approach is based on low computational-cost appearance-based features and learning based Bayesian classifier in order to determine whether the segmentation outcome is proper or improper segment. Experimental results for evaluating the segmentation outcomes of ear images indicate the benefits of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信