Mohammad Katebi, Hongwei Liu, P. Maghoul, J. Blatz
{"title":"考虑下坡土壤缓慢移动和季节温度变化的管道最佳埋深","authors":"Mohammad Katebi, Hongwei Liu, P. Maghoul, J. Blatz","doi":"10.1115/IPC2018-78736","DOIUrl":null,"url":null,"abstract":"Thermal stress induced in a buried pipeline due to temperature variation is of great concern in Canada due to its extreme cold winter and warm summer. Thermal stress decreases by increasing the pipe’s burial depth while the interaction forces due to ground displacement increase by increasing the burial depth. As a result, the optimum burial depth of a pipeline is of great importance to pipeline companies to minimize interactions between the pipeline and soil in case of temperature variations and ground displacements. Thermal stress is estimated from a heat transfer analysis considering the phase change in the soil using COMSOL. Soil-pipeline interaction based on 1984 ASCE Guidelines [1] is used for considering the effects of ground movements. The combined stress on the pipeline is estimated as a function of burial depth and is presented in a curve for design purposes. Numerical analysis by ABAQUS shows the adequacy of the presented curve.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Optimum Pipeline Burial Depth Considering Slow Downslope Soil Movement and Seasonal Temperature Variation\",\"authors\":\"Mohammad Katebi, Hongwei Liu, P. Maghoul, J. Blatz\",\"doi\":\"10.1115/IPC2018-78736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal stress induced in a buried pipeline due to temperature variation is of great concern in Canada due to its extreme cold winter and warm summer. Thermal stress decreases by increasing the pipe’s burial depth while the interaction forces due to ground displacement increase by increasing the burial depth. As a result, the optimum burial depth of a pipeline is of great importance to pipeline companies to minimize interactions between the pipeline and soil in case of temperature variations and ground displacements. Thermal stress is estimated from a heat transfer analysis considering the phase change in the soil using COMSOL. Soil-pipeline interaction based on 1984 ASCE Guidelines [1] is used for considering the effects of ground movements. The combined stress on the pipeline is estimated as a function of burial depth and is presented in a curve for design purposes. Numerical analysis by ABAQUS shows the adequacy of the presented curve.\",\"PeriodicalId\":164582,\"journal\":{\"name\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Optimum Pipeline Burial Depth Considering Slow Downslope Soil Movement and Seasonal Temperature Variation
Thermal stress induced in a buried pipeline due to temperature variation is of great concern in Canada due to its extreme cold winter and warm summer. Thermal stress decreases by increasing the pipe’s burial depth while the interaction forces due to ground displacement increase by increasing the burial depth. As a result, the optimum burial depth of a pipeline is of great importance to pipeline companies to minimize interactions between the pipeline and soil in case of temperature variations and ground displacements. Thermal stress is estimated from a heat transfer analysis considering the phase change in the soil using COMSOL. Soil-pipeline interaction based on 1984 ASCE Guidelines [1] is used for considering the effects of ground movements. The combined stress on the pipeline is estimated as a function of burial depth and is presented in a curve for design purposes. Numerical analysis by ABAQUS shows the adequacy of the presented curve.