一种改进的超声反射定位方法

C. Hsu, Hsin-Chuan Chen, Chien-Yu Lai
{"title":"一种改进的超声反射定位方法","authors":"C. Hsu, Hsin-Chuan Chen, Chien-Yu Lai","doi":"10.1109/CAR.2009.93","DOIUrl":null,"url":null,"abstract":"In this paper, an ultrasonic-based localization using ultrasonic reflection method is proposed. Experiment environment includes a mobile robot and four poles forming a square around the measuring site. Ultrasonic sensors built on the poles serve as receivers and the mobile robot serves as a transmitter, and all ultrasonic sensors are integrated with their Zig-Bee modules. By the sequential ultrasonic signal transmission between the robot and the poles, the ultrasonic sensors on the poles can then measure the time-of-flight (TOF) without interference to calculate the distance between the receiver and transmitter ends. According to an established two-dimensional coordinate model, position of the robot can be obtained based on the distance measurements. Thanks to Zig-Bee modules, position information of the robot can be instantly conveyed to a remote PC for monitoring the robot and path planning. Extensive experiments conducted have shown a satisfactory accuracy of the coordinates of the mobile robot can be obtained via the proposed localization scheme.","PeriodicalId":320307,"journal":{"name":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Improved Ultrasonic-Based Localization Using Reflection Method\",\"authors\":\"C. Hsu, Hsin-Chuan Chen, Chien-Yu Lai\",\"doi\":\"10.1109/CAR.2009.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an ultrasonic-based localization using ultrasonic reflection method is proposed. Experiment environment includes a mobile robot and four poles forming a square around the measuring site. Ultrasonic sensors built on the poles serve as receivers and the mobile robot serves as a transmitter, and all ultrasonic sensors are integrated with their Zig-Bee modules. By the sequential ultrasonic signal transmission between the robot and the poles, the ultrasonic sensors on the poles can then measure the time-of-flight (TOF) without interference to calculate the distance between the receiver and transmitter ends. According to an established two-dimensional coordinate model, position of the robot can be obtained based on the distance measurements. Thanks to Zig-Bee modules, position information of the robot can be instantly conveyed to a remote PC for monitoring the robot and path planning. Extensive experiments conducted have shown a satisfactory accuracy of the coordinates of the mobile robot can be obtained via the proposed localization scheme.\",\"PeriodicalId\":320307,\"journal\":{\"name\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAR.2009.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAR.2009.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于超声反射的定位方法。实验环境包括一个移动机器人和四根杆子,在测量点周围形成一个正方形。安装在电线杆上的超声波传感器作为接收器,移动机器人作为发射器,所有的超声波传感器都与它们的zigbee模块集成在一起。通过机器人与极点之间的连续超声波信号传输,极点上的超声波传感器可以在不受干扰的情况下测量飞行时间(TOF),从而计算出接收端和发送端之间的距离。根据建立的二维坐标模型,基于距离测量得到机器人的位置。通过zigbee模块,机器人的位置信息可以即时传送到远程PC,用于监控机器人和路径规划。大量的实验表明,通过提出的定位方案可以获得令人满意的移动机器人坐标精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Ultrasonic-Based Localization Using Reflection Method
In this paper, an ultrasonic-based localization using ultrasonic reflection method is proposed. Experiment environment includes a mobile robot and four poles forming a square around the measuring site. Ultrasonic sensors built on the poles serve as receivers and the mobile robot serves as a transmitter, and all ultrasonic sensors are integrated with their Zig-Bee modules. By the sequential ultrasonic signal transmission between the robot and the poles, the ultrasonic sensors on the poles can then measure the time-of-flight (TOF) without interference to calculate the distance between the receiver and transmitter ends. According to an established two-dimensional coordinate model, position of the robot can be obtained based on the distance measurements. Thanks to Zig-Bee modules, position information of the robot can be instantly conveyed to a remote PC for monitoring the robot and path planning. Extensive experiments conducted have shown a satisfactory accuracy of the coordinates of the mobile robot can be obtained via the proposed localization scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信