Imants Zarembo, A. Teilans, K. Barghorn, Y. Merkuryev, Gundega Bēriņa
{"title":"关系数据模型和语义本体的相似性评估方法","authors":"Imants Zarembo, A. Teilans, K. Barghorn, Y. Merkuryev, Gundega Bēriņa","doi":"10.1109/SIMS.2016.21","DOIUrl":null,"url":null,"abstract":"In the upcoming age of semantic web there is a large number of relational databases being widely used. When time comes for a legacy relational database to migrate to semantic web or to be integrated with it, an important issue of determining similarity (compatibility) between two data models expressed in different ways arises. The goal of this paper is to describe the methodology for similarity assessment of relational database models and semantic data models and to present an ontology matching tool research prototype. The methodology consists of a set of steps, including transformation rules for data models, whose compatibility must be assessed, to the same ontology representation and applying ontology matching techniques. The methodology enables domain experts to perform a matching task semi-automatically between a relational data model and data model expressed as an ontology. The results of the semi-automatic matching are manually verified by the domain experts. The methodology was approbated using a use case from land administration domain. In the use case compatibility of data model provided by an international standard and a relational database had to be assessed.","PeriodicalId":308996,"journal":{"name":"2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methodology for Similarity Assessment of Relational Data Models and Semantic Ontologies\",\"authors\":\"Imants Zarembo, A. Teilans, K. Barghorn, Y. Merkuryev, Gundega Bēriņa\",\"doi\":\"10.1109/SIMS.2016.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the upcoming age of semantic web there is a large number of relational databases being widely used. When time comes for a legacy relational database to migrate to semantic web or to be integrated with it, an important issue of determining similarity (compatibility) between two data models expressed in different ways arises. The goal of this paper is to describe the methodology for similarity assessment of relational database models and semantic data models and to present an ontology matching tool research prototype. The methodology consists of a set of steps, including transformation rules for data models, whose compatibility must be assessed, to the same ontology representation and applying ontology matching techniques. The methodology enables domain experts to perform a matching task semi-automatically between a relational data model and data model expressed as an ontology. The results of the semi-automatic matching are manually verified by the domain experts. The methodology was approbated using a use case from land administration domain. In the use case compatibility of data model provided by an international standard and a relational database had to be assessed.\",\"PeriodicalId\":308996,\"journal\":{\"name\":\"2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIMS.2016.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIMS.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methodology for Similarity Assessment of Relational Data Models and Semantic Ontologies
In the upcoming age of semantic web there is a large number of relational databases being widely used. When time comes for a legacy relational database to migrate to semantic web or to be integrated with it, an important issue of determining similarity (compatibility) between two data models expressed in different ways arises. The goal of this paper is to describe the methodology for similarity assessment of relational database models and semantic data models and to present an ontology matching tool research prototype. The methodology consists of a set of steps, including transformation rules for data models, whose compatibility must be assessed, to the same ontology representation and applying ontology matching techniques. The methodology enables domain experts to perform a matching task semi-automatically between a relational data model and data model expressed as an ontology. The results of the semi-automatic matching are manually verified by the domain experts. The methodology was approbated using a use case from land administration domain. In the use case compatibility of data model provided by an international standard and a relational database had to be assessed.