分布式数据协调算法的比较研究

M. Zasadzinski, M. Darouach, J. Keller, M. Boutayeb, G. Krzakala
{"title":"分布式数据协调算法的比较研究","authors":"M. Zasadzinski, M. Darouach, J. Keller, M. Boutayeb, G. Krzakala","doi":"10.1109/IECON.1989.69676","DOIUrl":null,"url":null,"abstract":"A comparative study of data reconciliation methods based on decentralized calculus is presented. An efficient strategy for reconciling data requires a dimensionality reduction of the initial problem by observability and redundancy concepts. The decentralized calculus is applied to the redundant subsystem obtained by this decomposition. The result obtained from applying different algorithms to a numerical example shows the efficiency of using an analytical algorithm with coordination by coupling variables. If there is a incidence matrix of a subsystem which is not a full row rank matrix, the Gauss-Seidel algorithm can be used. A relaxation scheme guarantees the convergence of this algorithm.<<ETX>>","PeriodicalId":384081,"journal":{"name":"15th Annual Conference of IEEE Industrial Electronics Society","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of decentralized data reconciliation algorithms\",\"authors\":\"M. Zasadzinski, M. Darouach, J. Keller, M. Boutayeb, G. Krzakala\",\"doi\":\"10.1109/IECON.1989.69676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative study of data reconciliation methods based on decentralized calculus is presented. An efficient strategy for reconciling data requires a dimensionality reduction of the initial problem by observability and redundancy concepts. The decentralized calculus is applied to the redundant subsystem obtained by this decomposition. The result obtained from applying different algorithms to a numerical example shows the efficiency of using an analytical algorithm with coordination by coupling variables. If there is a incidence matrix of a subsystem which is not a full row rank matrix, the Gauss-Seidel algorithm can be used. A relaxation scheme guarantees the convergence of this algorithm.<<ETX>>\",\"PeriodicalId\":384081,\"journal\":{\"name\":\"15th Annual Conference of IEEE Industrial Electronics Society\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th Annual Conference of IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1989.69676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Annual Conference of IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1989.69676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对基于分散演算的数据协调方法进行了比较研究。协调数据的有效策略需要通过可观察性和冗余概念降低初始问题的维数。将分散演算应用于分解得到的冗余子系统。将不同算法应用于一个数值算例的结果表明,采用耦合变量协调的解析算法是有效的。如果子系统的关联矩阵不是满行秩矩阵,则可以使用高斯-赛德尔算法。松弛方案保证了该算法的收敛性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of decentralized data reconciliation algorithms
A comparative study of data reconciliation methods based on decentralized calculus is presented. An efficient strategy for reconciling data requires a dimensionality reduction of the initial problem by observability and redundancy concepts. The decentralized calculus is applied to the redundant subsystem obtained by this decomposition. The result obtained from applying different algorithms to a numerical example shows the efficiency of using an analytical algorithm with coordination by coupling variables. If there is a incidence matrix of a subsystem which is not a full row rank matrix, the Gauss-Seidel algorithm can be used. A relaxation scheme guarantees the convergence of this algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信