人工神经网络与遗传算法图像分割的比较分析

S. Indira, A. Ramesh
{"title":"人工神经网络与遗传算法图像分割的比较分析","authors":"S. Indira, A. Ramesh","doi":"10.1109/PACC.2011.5979059","DOIUrl":null,"url":null,"abstract":"Image segmentation is an important step in image processing. Most of the segmentation methods are parametric and the results of segmentation depend on the correctness of the estimated parameters. In case of supervised segmentation, a priori knowledge is needed for successful segmentation. So, nonparametric and unsupervised segmentation method is used when a priori information is not available. Kohonen's Self Organizing Maps (SOM), an unsupervised and nonparametric artificial neural network method is used to identify the main features present in the image. Genetic Algorithm (GA) can be applied to the results of SOM for optimal segmentation results. In this paper, the basic SOM, SOM combined with GA and some of the variants of SOM like the Variable Structure SOM (VSSOM), Parameterless SOM (PLSOM) are compared and their performance is evaluated. A new unsupervised, nonparametric method is developed by combining the advantages of VSSOM and PLSOM. The experiments performed on the satellite image shows that the modified PLSOM is efficient and the time taken for the segmentation is less when compared to the other methods.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Image Segmentation Using Artificial Neural Network and Genetic Algorithm: A Comparative Analysis\",\"authors\":\"S. Indira, A. Ramesh\",\"doi\":\"10.1109/PACC.2011.5979059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is an important step in image processing. Most of the segmentation methods are parametric and the results of segmentation depend on the correctness of the estimated parameters. In case of supervised segmentation, a priori knowledge is needed for successful segmentation. So, nonparametric and unsupervised segmentation method is used when a priori information is not available. Kohonen's Self Organizing Maps (SOM), an unsupervised and nonparametric artificial neural network method is used to identify the main features present in the image. Genetic Algorithm (GA) can be applied to the results of SOM for optimal segmentation results. In this paper, the basic SOM, SOM combined with GA and some of the variants of SOM like the Variable Structure SOM (VSSOM), Parameterless SOM (PLSOM) are compared and their performance is evaluated. A new unsupervised, nonparametric method is developed by combining the advantages of VSSOM and PLSOM. The experiments performed on the satellite image shows that the modified PLSOM is efficient and the time taken for the segmentation is less when compared to the other methods.\",\"PeriodicalId\":403612,\"journal\":{\"name\":\"2011 International Conference on Process Automation, Control and Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Process Automation, Control and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACC.2011.5979059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5979059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

图像分割是图像处理中的一个重要步骤。大多数分割方法都是参数化的,分割结果取决于估计参数的正确性。在监督分割的情况下,成功分割需要先验知识。因此,在没有先验信息的情况下,采用非参数无监督分割方法。Kohonen的自组织映射(SOM)是一种无监督和非参数的人工神经网络方法,用于识别图像中的主要特征。遗传算法(GA)可以应用于SOM的结果,以获得最优的分割结果。本文对基本SOM、结合遗传算法的SOM以及SOM的一些变体如变结构SOM (VSSOM)、无参数SOM (PLSOM)进行了比较,并对它们的性能进行了评价。结合VSSOM和PLSOM的优点,提出了一种新的无监督非参数方法。在卫星图像上进行的实验表明,与其他方法相比,改进的PLSOM分割方法效率高,分割时间短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Segmentation Using Artificial Neural Network and Genetic Algorithm: A Comparative Analysis
Image segmentation is an important step in image processing. Most of the segmentation methods are parametric and the results of segmentation depend on the correctness of the estimated parameters. In case of supervised segmentation, a priori knowledge is needed for successful segmentation. So, nonparametric and unsupervised segmentation method is used when a priori information is not available. Kohonen's Self Organizing Maps (SOM), an unsupervised and nonparametric artificial neural network method is used to identify the main features present in the image. Genetic Algorithm (GA) can be applied to the results of SOM for optimal segmentation results. In this paper, the basic SOM, SOM combined with GA and some of the variants of SOM like the Variable Structure SOM (VSSOM), Parameterless SOM (PLSOM) are compared and their performance is evaluated. A new unsupervised, nonparametric method is developed by combining the advantages of VSSOM and PLSOM. The experiments performed on the satellite image shows that the modified PLSOM is efficient and the time taken for the segmentation is less when compared to the other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信