统计可验证性的拓扑

K. Genin, Kevin T. Kelly
{"title":"统计可验证性的拓扑","authors":"K. Genin, Kevin T. Kelly","doi":"10.4204/EPTCS.251.17","DOIUrl":null,"url":null,"abstract":"Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Topology of Statistical Verifiability\",\"authors\":\"K. Genin, Kevin T. Kelly\",\"doi\":\"10.4204/EPTCS.251.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.\",\"PeriodicalId\":118894,\"journal\":{\"name\":\"Theoretical Aspects of Rationality and Knowledge\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Aspects of Rationality and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.251.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.251.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

经验和形式调查的拓扑模型越来越普遍。它们出现在领域理论[1,16]、形式学习理论[18]、认识论和科学哲学[10,15,8,9,2]、统计学[6,7]和模态逻辑[17,4]等不同领域。在这些应用中,开集通常被解释为假设,可以通过排除相关可能性的真命题信息来演绎验证。然而,在统计数据分析中,人们通常会收到与每个统计假设在逻辑上兼容的随机样本。我们通过求解概率测度上的唯一拓扑来弥合命题数据和统计数据之间的差距,其中开集正是统计可验证的假设。进一步,我们将这一结果推广到基于统计数据的极限下可学习性的拓扑表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Topology of Statistical Verifiability
Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信