{"title":"统计可验证性的拓扑","authors":"K. Genin, Kevin T. Kelly","doi":"10.4204/EPTCS.251.17","DOIUrl":null,"url":null,"abstract":"Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Topology of Statistical Verifiability\",\"authors\":\"K. Genin, Kevin T. Kelly\",\"doi\":\"10.4204/EPTCS.251.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.\",\"PeriodicalId\":118894,\"journal\":{\"name\":\"Theoretical Aspects of Rationality and Knowledge\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Aspects of Rationality and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.251.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.251.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.