牛磺酸品种识别智能系统的初步研究

Bembamba Fulbert, O. T. Frédéric, Malo Sadouanouan, Yougbare Bernadette, O. Dominique
{"title":"牛磺酸品种识别智能系统的初步研究","authors":"Bembamba Fulbert, O. T. Frédéric, Malo Sadouanouan, Yougbare Bernadette, O. Dominique","doi":"10.1109/CSI54720.2022.9924139","DOIUrl":null,"url":null,"abstract":"Uncontrolled crossbreeding between zebus and taurine cattle is jeopardizing the genetic heritage of West African taurines and their specific ability to resist trypanosomosis. to achieve any successful conservation policy for this species, it is crucial to accurately identify purebred taurines. Techniques in use today include empirical method and biological analysis. We offer in this paper a supervised Machine Learning approach of pure-bred taurine recognition. Five algorithms were trained using morphological data from hundreds of cows. Each of the models produced promising results. The RBF non linear SVM performs the best with up to 87% accuracy and 0.9308 of AUC. Furthermore, the correlation coefficients allowed to define the most discriminating morphological trait.","PeriodicalId":221137,"journal":{"name":"2022 International Conference on Connected Systems & Intelligence (CSI)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intelligent system for taurine breed recognition: preliminary results\",\"authors\":\"Bembamba Fulbert, O. T. Frédéric, Malo Sadouanouan, Yougbare Bernadette, O. Dominique\",\"doi\":\"10.1109/CSI54720.2022.9924139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncontrolled crossbreeding between zebus and taurine cattle is jeopardizing the genetic heritage of West African taurines and their specific ability to resist trypanosomosis. to achieve any successful conservation policy for this species, it is crucial to accurately identify purebred taurines. Techniques in use today include empirical method and biological analysis. We offer in this paper a supervised Machine Learning approach of pure-bred taurine recognition. Five algorithms were trained using morphological data from hundreds of cows. Each of the models produced promising results. The RBF non linear SVM performs the best with up to 87% accuracy and 0.9308 of AUC. Furthermore, the correlation coefficients allowed to define the most discriminating morphological trait.\",\"PeriodicalId\":221137,\"journal\":{\"name\":\"2022 International Conference on Connected Systems & Intelligence (CSI)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Connected Systems & Intelligence (CSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSI54720.2022.9924139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Connected Systems & Intelligence (CSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSI54720.2022.9924139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

斑马与牛磺酸牛之间不受控制的杂交正在危及西非牛磺酸的遗传遗产及其抵抗锥虫病的特殊能力。为了实现对该物种的任何成功的保护政策,准确识别纯种牛磺酸是至关重要的。目前使用的技术包括经验方法和生物分析。本文提出了一种纯种牛磺酸识别的监督式机器学习方法。使用来自数百头奶牛的形态学数据训练了五种算法。每种模型都产生了令人鼓舞的结果。RBF非线性支持向量机的准确率高达87%,AUC为0.9308。此外,相关系数允许定义最有区别的形态性状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligent system for taurine breed recognition: preliminary results
Uncontrolled crossbreeding between zebus and taurine cattle is jeopardizing the genetic heritage of West African taurines and their specific ability to resist trypanosomosis. to achieve any successful conservation policy for this species, it is crucial to accurately identify purebred taurines. Techniques in use today include empirical method and biological analysis. We offer in this paper a supervised Machine Learning approach of pure-bred taurine recognition. Five algorithms were trained using morphological data from hundreds of cows. Each of the models produced promising results. The RBF non linear SVM performs the best with up to 87% accuracy and 0.9308 of AUC. Furthermore, the correlation coefficients allowed to define the most discriminating morphological trait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信