底盘:一致性满足在线信息扩散

Hui Li, Hui Li, S. Bhowmick
{"title":"底盘:一致性满足在线信息扩散","authors":"Hui Li, Hui Li, S. Bhowmick","doi":"10.1145/3318464.3389780","DOIUrl":null,"url":null,"abstract":"Online information diffusion generates huge volumes of social activities (eg. tweets, retweets posts, comments, likes) among individuals. Existing information diffusion modeling techniques are oblivious to conformity of individuals during the diffusion process, a fundamental human trait according to social psychology theories. Intuitively, conformity captures the extent to which an individual complies with social norms or expectations. In this paper, we present a novel framework called chassis to characterize online information diffusion by bridging classical information diffusion model with conformity from social psychology. To this end, we first extend \"Hawkes Process\", a well-known statistical technique utilized to model information diffusion, to quantitatively capture two flavors of conformity, informational conformity and normative conformity, hidden in activity sequences. Next, we present a novel semi-parametric inference approach to learn the proposed model. Experimental study with real-world datasets demonstrates the superiority of chassis to state-of-the-art conformity-unaware information diffusion models.","PeriodicalId":436122,"journal":{"name":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"CHASSIS: Conformity Meets Online Information Diffusion\",\"authors\":\"Hui Li, Hui Li, S. Bhowmick\",\"doi\":\"10.1145/3318464.3389780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online information diffusion generates huge volumes of social activities (eg. tweets, retweets posts, comments, likes) among individuals. Existing information diffusion modeling techniques are oblivious to conformity of individuals during the diffusion process, a fundamental human trait according to social psychology theories. Intuitively, conformity captures the extent to which an individual complies with social norms or expectations. In this paper, we present a novel framework called chassis to characterize online information diffusion by bridging classical information diffusion model with conformity from social psychology. To this end, we first extend \\\"Hawkes Process\\\", a well-known statistical technique utilized to model information diffusion, to quantitatively capture two flavors of conformity, informational conformity and normative conformity, hidden in activity sequences. Next, we present a novel semi-parametric inference approach to learn the proposed model. Experimental study with real-world datasets demonstrates the superiority of chassis to state-of-the-art conformity-unaware information diffusion models.\",\"PeriodicalId\":436122,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318464.3389780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318464.3389780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

网上信息的传播产生了大量的社会活动(例如。个人之间的tweet,转发(帖子,评论,喜欢)。根据社会心理学理论,现有的信息扩散建模技术忽略了个体在扩散过程中的从众性,这是人类的基本特征。从直觉上讲,从众是指个人遵守社会规范或期望的程度。本文通过将传统的信息扩散模型与社会心理学的整合理论相结合,提出了一种新的网络信息扩散框架——“底盘”。为此,我们首先扩展了“霍克斯过程”(Hawkes Process),这是一种众所周知的用于信息扩散建模的统计技术,以定量地捕捉隐藏在活动序列中的两种一致性,即信息一致性和规范一致性。接下来,我们提出了一种新的半参数推理方法来学习所提出的模型。实际数据集的实验研究证明了底盘与最先进的不合格信息扩散模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHASSIS: Conformity Meets Online Information Diffusion
Online information diffusion generates huge volumes of social activities (eg. tweets, retweets posts, comments, likes) among individuals. Existing information diffusion modeling techniques are oblivious to conformity of individuals during the diffusion process, a fundamental human trait according to social psychology theories. Intuitively, conformity captures the extent to which an individual complies with social norms or expectations. In this paper, we present a novel framework called chassis to characterize online information diffusion by bridging classical information diffusion model with conformity from social psychology. To this end, we first extend "Hawkes Process", a well-known statistical technique utilized to model information diffusion, to quantitatively capture two flavors of conformity, informational conformity and normative conformity, hidden in activity sequences. Next, we present a novel semi-parametric inference approach to learn the proposed model. Experimental study with real-world datasets demonstrates the superiority of chassis to state-of-the-art conformity-unaware information diffusion models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信