利用空间和时间不确定性冗余的自适应故障检测

Denise Ratasich, Michaela D. Platzer, R. Grosu, E. Bartocci
{"title":"利用空间和时间不确定性冗余的自适应故障检测","authors":"Denise Ratasich, Michaela D. Platzer, R. Grosu, E. Bartocci","doi":"10.1109/SASO.2019.00013","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) connects millions of devices of different cyber-physical systems (CPSs) providing the CPSs additional (implicit) redundancy during runtime. However, the increasing level of dynamicity, heterogeneity, and complexity adds to the system's vulnerability, and challenges its ability to react to faults. Self-healing is an increasingly popular approach for ensuring resilience, that is, a proper monitoring and recovery, in CPSs. This work encodes and searches an adaptive knowledge base in Prolog/ProbLog that models relations among system variables given that certain implicit redundancy exists in the system. We exploit the redundancy represented in our knowledge base to generate adaptive runtime monitors which compare related signals by considering uncertainties in space and time. This enables the comparison of uncertain, asynchronous, multi-rate and delayed measurements. The monitor is used to trigger the recovery process of a self-healing mechanism. We demonstrate our approach by deploying it in a real-world CPS prototype of a rover whose sensors are susceptible to failure.","PeriodicalId":259990,"journal":{"name":"2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Fault Detection Exploiting Redundancy with Uncertainties in Space and Time\",\"authors\":\"Denise Ratasich, Michaela D. Platzer, R. Grosu, E. Bartocci\",\"doi\":\"10.1109/SASO.2019.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) connects millions of devices of different cyber-physical systems (CPSs) providing the CPSs additional (implicit) redundancy during runtime. However, the increasing level of dynamicity, heterogeneity, and complexity adds to the system's vulnerability, and challenges its ability to react to faults. Self-healing is an increasingly popular approach for ensuring resilience, that is, a proper monitoring and recovery, in CPSs. This work encodes and searches an adaptive knowledge base in Prolog/ProbLog that models relations among system variables given that certain implicit redundancy exists in the system. We exploit the redundancy represented in our knowledge base to generate adaptive runtime monitors which compare related signals by considering uncertainties in space and time. This enables the comparison of uncertain, asynchronous, multi-rate and delayed measurements. The monitor is used to trigger the recovery process of a self-healing mechanism. We demonstrate our approach by deploying it in a real-world CPS prototype of a rover whose sensors are susceptible to failure.\",\"PeriodicalId\":259990,\"journal\":{\"name\":\"2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2019.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

物联网(IoT)连接了数百万不同网络物理系统(cps)的设备,在运行时为cps提供额外的(隐式)冗余。然而,不断增加的动态性、异构性和复杂性增加了系统的脆弱性,并挑战了系统对故障的反应能力。在cps中,自我修复是一种日益流行的确保复原力的方法,即适当的监测和恢复。这项工作在Prolog/ProbLog中编码和搜索一个自适应知识库,该知识库对系统中存在一定的隐式冗余的系统变量之间的关系进行建模。我们利用知识库中表示的冗余来生成自适应运行时监视器,该监视器通过考虑空间和时间的不确定性来比较相关信号。这使得不确定,异步,多速率和延迟测量的比较。监视器用于触发自愈机制的恢复过程。我们通过将其部署在探测器的真实CPS原型中来演示我们的方法,该探测器的传感器容易发生故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Fault Detection Exploiting Redundancy with Uncertainties in Space and Time
The Internet of Things (IoT) connects millions of devices of different cyber-physical systems (CPSs) providing the CPSs additional (implicit) redundancy during runtime. However, the increasing level of dynamicity, heterogeneity, and complexity adds to the system's vulnerability, and challenges its ability to react to faults. Self-healing is an increasingly popular approach for ensuring resilience, that is, a proper monitoring and recovery, in CPSs. This work encodes and searches an adaptive knowledge base in Prolog/ProbLog that models relations among system variables given that certain implicit redundancy exists in the system. We exploit the redundancy represented in our knowledge base to generate adaptive runtime monitors which compare related signals by considering uncertainties in space and time. This enables the comparison of uncertain, asynchronous, multi-rate and delayed measurements. The monitor is used to trigger the recovery process of a self-healing mechanism. We demonstrate our approach by deploying it in a real-world CPS prototype of a rover whose sensors are susceptible to failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信