{"title":"高性能计算应用中内存分配异常的识别与表征","authors":"A. A. Gomes, Enzo Molion, R. Souto, J. Méhaut","doi":"10.5753/wscad.2019.8652","DOIUrl":null,"url":null,"abstract":"A memory allocation anomaly occurs when the allocation of a set of heap blocks imposes an unnecessary overhead on the execution of an application. In this paper, we propose a method for identifying, locating, characterizing and fixing allocation anomalies, and a tool for developers to apply the method. We experiment our method and tool with a numerical simulator aimed at approximating the solutions to partial differential equations using a finite element method. We show that taming allocation anomalies in this simulator reduces the memory footprint of its processes by 37.27% and the execution time by 16.52%. We conclude that the developer of high-performance computing applications can benefit from the method and tool during the software development cycle.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"1119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification and Characterization of Memory Allocation Anomalies in High-Performance Computing Applications\",\"authors\":\"A. A. Gomes, Enzo Molion, R. Souto, J. Méhaut\",\"doi\":\"10.5753/wscad.2019.8652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A memory allocation anomaly occurs when the allocation of a set of heap blocks imposes an unnecessary overhead on the execution of an application. In this paper, we propose a method for identifying, locating, characterizing and fixing allocation anomalies, and a tool for developers to apply the method. We experiment our method and tool with a numerical simulator aimed at approximating the solutions to partial differential equations using a finite element method. We show that taming allocation anomalies in this simulator reduces the memory footprint of its processes by 37.27% and the execution time by 16.52%. We conclude that the developer of high-performance computing applications can benefit from the method and tool during the software development cycle.\",\"PeriodicalId\":117711,\"journal\":{\"name\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"volume\":\"1119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wscad.2019.8652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification and Characterization of Memory Allocation Anomalies in High-Performance Computing Applications
A memory allocation anomaly occurs when the allocation of a set of heap blocks imposes an unnecessary overhead on the execution of an application. In this paper, we propose a method for identifying, locating, characterizing and fixing allocation anomalies, and a tool for developers to apply the method. We experiment our method and tool with a numerical simulator aimed at approximating the solutions to partial differential equations using a finite element method. We show that taming allocation anomalies in this simulator reduces the memory footprint of its processes by 37.27% and the execution time by 16.52%. We conclude that the developer of high-performance computing applications can benefit from the method and tool during the software development cycle.