软件故障预测特征选择的实证研究

Jiaqiang Chen, Shulong Liu, Xiang Chen, Qing Gu, Daoxu Chen
{"title":"软件故障预测特征选择的实证研究","authors":"Jiaqiang Chen, Shulong Liu, Xiang Chen, Qing Gu, Daoxu Chen","doi":"10.1145/2532443.2532461","DOIUrl":null,"url":null,"abstract":"Classification based software fault prediction methods aim to classify the modules into either fault-prone or non-fault-prone. Feature selection is a preprocess step used to improve the data quality. However most of previous research mainly focus on feature relevance analysis, there is little work focusing on feature redundancy analysis. Therefore we propose a two-stage framework for feature selection to solve this issue. In particular, during the feature relevance phase, we adopt three different relevance measures to obtain the relevant feature subset. Then during the feature redundancy analysis phase, we use a cluster-based method to eliminate redundant features. To verify the effectiveness of our proposed framework, we choose typical real-world software projects, including Eclipse projects and NASA software project KC1. Final empirical result shows the effectiveness of our proposed framework.","PeriodicalId":362187,"journal":{"name":"Proceedings of the 5th Asia-Pacific Symposium on Internetware","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Empirical studies on feature selection for software fault prediction\",\"authors\":\"Jiaqiang Chen, Shulong Liu, Xiang Chen, Qing Gu, Daoxu Chen\",\"doi\":\"10.1145/2532443.2532461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification based software fault prediction methods aim to classify the modules into either fault-prone or non-fault-prone. Feature selection is a preprocess step used to improve the data quality. However most of previous research mainly focus on feature relevance analysis, there is little work focusing on feature redundancy analysis. Therefore we propose a two-stage framework for feature selection to solve this issue. In particular, during the feature relevance phase, we adopt three different relevance measures to obtain the relevant feature subset. Then during the feature redundancy analysis phase, we use a cluster-based method to eliminate redundant features. To verify the effectiveness of our proposed framework, we choose typical real-world software projects, including Eclipse projects and NASA software project KC1. Final empirical result shows the effectiveness of our proposed framework.\",\"PeriodicalId\":362187,\"journal\":{\"name\":\"Proceedings of the 5th Asia-Pacific Symposium on Internetware\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Asia-Pacific Symposium on Internetware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2532443.2532461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2532443.2532461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

基于分类的软件故障预测方法旨在将模块划分为易故障模块和非易故障模块。特征选择是用于提高数据质量的预处理步骤。然而,以往的研究大多集中在特征相关性分析上,对特征冗余分析的研究很少。因此,我们提出了一个两阶段的特征选择框架来解决这个问题。特别是在特征关联阶段,我们采用了三种不同的关联度量来获得相关的特征子集。然后在特征冗余分析阶段,采用基于聚类的方法剔除冗余特征。为了验证我们提出的框架的有效性,我们选择了典型的实际软件项目,包括Eclipse项目和NASA软件项目KC1。最后的实证结果表明了我们所提出的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical studies on feature selection for software fault prediction
Classification based software fault prediction methods aim to classify the modules into either fault-prone or non-fault-prone. Feature selection is a preprocess step used to improve the data quality. However most of previous research mainly focus on feature relevance analysis, there is little work focusing on feature redundancy analysis. Therefore we propose a two-stage framework for feature selection to solve this issue. In particular, during the feature relevance phase, we adopt three different relevance measures to obtain the relevant feature subset. Then during the feature redundancy analysis phase, we use a cluster-based method to eliminate redundant features. To verify the effectiveness of our proposed framework, we choose typical real-world software projects, including Eclipse projects and NASA software project KC1. Final empirical result shows the effectiveness of our proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信