{"title":"求解近似二人纳什均衡的复杂度","authors":"A. Rubinstein","doi":"10.1145/3055589.3055596","DOIUrl":null,"url":null,"abstract":"We prove that there exists a constant ε > 0 such that, assuming the Exponential Time Hypothesis for PPAD, computing an ε-approximate Nash equilibrium in a two-player (n × n) game requires quasi-polynomial time, nlog1-o(1) n. This matches (up to the o(1) term) the algorithm of Lipton, Markakis, and Mehta [54]. Our proof relies on a variety of techniques from the study of probabilistically checkable proofs (PCP), this is the first time that such ideas are used for a reduction between problems inside PPAD. En route, we also prove new hardness results for computing Nash equilibria in games with many players. In particular, we show that computing an ε-approximate Nash equilibrium in a game with n players requires 2Ω(n) oracle queries to the payoff tensors. This resolves an open problem posed by Hart and Nisan [43], Babichenko [13], and Chen et al. [28]. In fact, our results for n-player games are stronger: they hold with respect to the (ε,δ)-WeakNash relaxation recently introduced by Babichenko et al. [15].","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"Settling the Complexity of Computing Approximate Two-Player Nash Equilibria\",\"authors\":\"A. Rubinstein\",\"doi\":\"10.1145/3055589.3055596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that there exists a constant ε > 0 such that, assuming the Exponential Time Hypothesis for PPAD, computing an ε-approximate Nash equilibrium in a two-player (n × n) game requires quasi-polynomial time, nlog1-o(1) n. This matches (up to the o(1) term) the algorithm of Lipton, Markakis, and Mehta [54]. Our proof relies on a variety of techniques from the study of probabilistically checkable proofs (PCP), this is the first time that such ideas are used for a reduction between problems inside PPAD. En route, we also prove new hardness results for computing Nash equilibria in games with many players. In particular, we show that computing an ε-approximate Nash equilibrium in a game with n players requires 2Ω(n) oracle queries to the payoff tensors. This resolves an open problem posed by Hart and Nisan [43], Babichenko [13], and Chen et al. [28]. In fact, our results for n-player games are stronger: they hold with respect to the (ε,δ)-WeakNash relaxation recently introduced by Babichenko et al. [15].\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055589.3055596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055589.3055596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Settling the Complexity of Computing Approximate Two-Player Nash Equilibria
We prove that there exists a constant ε > 0 such that, assuming the Exponential Time Hypothesis for PPAD, computing an ε-approximate Nash equilibrium in a two-player (n × n) game requires quasi-polynomial time, nlog1-o(1) n. This matches (up to the o(1) term) the algorithm of Lipton, Markakis, and Mehta [54]. Our proof relies on a variety of techniques from the study of probabilistically checkable proofs (PCP), this is the first time that such ideas are used for a reduction between problems inside PPAD. En route, we also prove new hardness results for computing Nash equilibria in games with many players. In particular, we show that computing an ε-approximate Nash equilibrium in a game with n players requires 2Ω(n) oracle queries to the payoff tensors. This resolves an open problem posed by Hart and Nisan [43], Babichenko [13], and Chen et al. [28]. In fact, our results for n-player games are stronger: they hold with respect to the (ε,δ)-WeakNash relaxation recently introduced by Babichenko et al. [15].