考虑抗振锤损伤的导线微风振动规律及模态识别方法研究

Long Zhao, Xudong Lu, Xinbo Huang, Hao Yang, Guoze Feng
{"title":"考虑抗振锤损伤的导线微风振动规律及模态识别方法研究","authors":"Long Zhao, Xudong Lu, Xinbo Huang, Hao Yang, Guoze Feng","doi":"10.32604/sdhm.2023.025977","DOIUrl":null,"url":null,"abstract":"In the harsh environment, the structural health of the anti-vibration hammer, which suffers from the coupled effects of corrosion and fatigue damage, is significantly reduced. As part of the conductor structure, the anti-vibration hammer is rigidly attached to the conductor, effectively suppressing conductor vibration. The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure. Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage, which to obtained the vibration acceleration signal of the conductor. The acceleration vibration signal is processed and analyzed in the time and frequency domains. The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology. The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage. The natural frequency increases for each order, with an absolute change ranging from 0.15 to 6.49 Hz. The anti-vibration hammer slipped due to a loose connection, the 1st natural frequency increases from 8.18 to 16.62 Hz. Therefore, in engineering applications, there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor. This is even a tiny damage that cannot be seen. This method will prevent the further expansion of the damage that can cause accidents.","PeriodicalId":236903,"journal":{"name":"Structural Durability & Health Monitoring","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Breeze Vibration Law and Modal Identification Method of Conductor Considering Anti-Vibration Hammer Damage\",\"authors\":\"Long Zhao, Xudong Lu, Xinbo Huang, Hao Yang, Guoze Feng\",\"doi\":\"10.32604/sdhm.2023.025977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the harsh environment, the structural health of the anti-vibration hammer, which suffers from the coupled effects of corrosion and fatigue damage, is significantly reduced. As part of the conductor structure, the anti-vibration hammer is rigidly attached to the conductor, effectively suppressing conductor vibration. The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure. Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage, which to obtained the vibration acceleration signal of the conductor. The acceleration vibration signal is processed and analyzed in the time and frequency domains. The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology. The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage. The natural frequency increases for each order, with an absolute change ranging from 0.15 to 6.49 Hz. The anti-vibration hammer slipped due to a loose connection, the 1st natural frequency increases from 8.18 to 16.62 Hz. Therefore, in engineering applications, there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor. This is even a tiny damage that cannot be seen. This method will prevent the further expansion of the damage that can cause accidents.\",\"PeriodicalId\":236903,\"journal\":{\"name\":\"Structural Durability & Health Monitoring\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Durability & Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/sdhm.2023.025977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Durability & Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/sdhm.2023.025977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在恶劣环境下,受腐蚀和疲劳损伤耦合作用的抗振锤结构健康度显著降低。防振锤作为导体结构的一部分,刚性地附着在导体上,有效地抑制导体振动。导线的微风振动规律和固有模态频率在抗振锤结构中发生改变。通过搭建振动实验平台,模拟抗振锤头脱落、位置滑移等多种故障,得到导线的振动加速度信号。对加速度振动信号进行时域和频域处理和分析。利用研究结果推导了多故障情况下导线的微风振动规律,提出了一种抗振动锤击损伤在线监测技术。结果表明:抗振锤破坏后,导体的振动加速度值和振动强度显著提高;固有频率随阶数的增加而增加,其绝对变化范围为0.15 ~ 6.49 Hz。防振锤因连接松动而打滑,第一固有频率由8.18 Hz提高到16.62 Hz。因此,在工程应用中,通过监测导体的模态固有频率来确定抗振锤损伤情况是不可能的。这甚至是一个看不见的微小损伤。这种方法将防止可能引起事故的损害进一步扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Breeze Vibration Law and Modal Identification Method of Conductor Considering Anti-Vibration Hammer Damage
In the harsh environment, the structural health of the anti-vibration hammer, which suffers from the coupled effects of corrosion and fatigue damage, is significantly reduced. As part of the conductor structure, the anti-vibration hammer is rigidly attached to the conductor, effectively suppressing conductor vibration. The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure. Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage, which to obtained the vibration acceleration signal of the conductor. The acceleration vibration signal is processed and analyzed in the time and frequency domains. The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology. The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage. The natural frequency increases for each order, with an absolute change ranging from 0.15 to 6.49 Hz. The anti-vibration hammer slipped due to a loose connection, the 1st natural frequency increases from 8.18 to 16.62 Hz. Therefore, in engineering applications, there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor. This is even a tiny damage that cannot be seen. This method will prevent the further expansion of the damage that can cause accidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信