TExVis:一个探索Twitter数据的交互式可视化工具

S. Humayoun, Saman Ardalan, Ragaad Altarawneh, A. Ebert
{"title":"TExVis:一个探索Twitter数据的交互式可视化工具","authors":"S. Humayoun, Saman Ardalan, Ragaad Altarawneh, A. Ebert","doi":"10.2312/eurovisshort.20171149","DOIUrl":null,"url":null,"abstract":"Exploring tweets enables us understanding people’s reaction and feedback regarding any particular event or product. Many tools have been developed to visualize Twitter data based on some criteria, e.g., keyword frequency or evolution of topics. Visualizing the relations between the keywords of the underlying Twitter data opens another window to analyze the people’s reaction towards a particular event/product. Targeting this concern, our developed tool, called TExVis (Tweets Explorer and Visualizer), visualizes important keywords (e.g., hashtags, nouns, verbs) from the underlying tweets based on their frequency and shows the relations between them based on some criteria (e.g., the common tweets), using an extended Chord diagram. TExVis also visualizes the sentimental polarity for a better understanding of the keywords associated tweets. Further, the provided interaction, multi-level navigation, and filtering options help the users in better exploration of the underlying tweets. A user study with 16 participants shows a high acceptance towards the tool and our approach in general.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"TExVis: An Interactive Visual Tool to Explore Twitter Data\",\"authors\":\"S. Humayoun, Saman Ardalan, Ragaad Altarawneh, A. Ebert\",\"doi\":\"10.2312/eurovisshort.20171149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring tweets enables us understanding people’s reaction and feedback regarding any particular event or product. Many tools have been developed to visualize Twitter data based on some criteria, e.g., keyword frequency or evolution of topics. Visualizing the relations between the keywords of the underlying Twitter data opens another window to analyze the people’s reaction towards a particular event/product. Targeting this concern, our developed tool, called TExVis (Tweets Explorer and Visualizer), visualizes important keywords (e.g., hashtags, nouns, verbs) from the underlying tweets based on their frequency and shows the relations between them based on some criteria (e.g., the common tweets), using an extended Chord diagram. TExVis also visualizes the sentimental polarity for a better understanding of the keywords associated tweets. Further, the provided interaction, multi-level navigation, and filtering options help the users in better exploration of the underlying tweets. A user study with 16 participants shows a high acceptance towards the tool and our approach in general.\",\"PeriodicalId\":224719,\"journal\":{\"name\":\"Eurographics Conference on Visualization\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/eurovisshort.20171149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/eurovisshort.20171149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

探索推文可以让我们了解人们对任何特定事件或产品的反应和反馈。已经开发了许多工具来基于一些标准来可视化Twitter数据,例如,关键字频率或主题的演变。可视化底层Twitter数据的关键字之间的关系打开了另一个窗口,可以分析人们对特定事件/产品的反应。针对这一问题,我们开发了名为TExVis (Tweets Explorer和Visualizer)的工具,可以根据频率从底层Tweets中可视化重要的关键字(例如,标签、名词、动词),并使用扩展的和弦图根据某些标准(例如,常见的Tweets)显示它们之间的关系。TExVis还将情感极性可视化,以便更好地理解相关tweet的关键字。此外,提供的交互、多级导航和过滤选项帮助用户更好地探索底层tweet。一项有16名参与者的用户研究表明,总体上对该工具和我们的方法有很高的接受度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TExVis: An Interactive Visual Tool to Explore Twitter Data
Exploring tweets enables us understanding people’s reaction and feedback regarding any particular event or product. Many tools have been developed to visualize Twitter data based on some criteria, e.g., keyword frequency or evolution of topics. Visualizing the relations between the keywords of the underlying Twitter data opens another window to analyze the people’s reaction towards a particular event/product. Targeting this concern, our developed tool, called TExVis (Tweets Explorer and Visualizer), visualizes important keywords (e.g., hashtags, nouns, verbs) from the underlying tweets based on their frequency and shows the relations between them based on some criteria (e.g., the common tweets), using an extended Chord diagram. TExVis also visualizes the sentimental polarity for a better understanding of the keywords associated tweets. Further, the provided interaction, multi-level navigation, and filtering options help the users in better exploration of the underlying tweets. A user study with 16 participants shows a high acceptance towards the tool and our approach in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信