伪厄米性与从金融学中剔除布朗运动

William Hicks
{"title":"伪厄米性与从金融学中剔除布朗运动","authors":"William Hicks","doi":"10.2139/ssrn.3684508","DOIUrl":null,"url":null,"abstract":"In this article we apply the methods of quantum mechanics to the study of the financial markets. Specifically, we discuss the Pseudo-Hermiticity of the Hamiltonian operators associated to the typical partial differential equations of Mathematical Finance (such as the Black-Scholes equation) and how this relates to the non-arbitrage condition. \nWe propose that one can use a Schrodinger equation to derive the probabilistic behaviour of the financial market, and discuss the benefits of doing so. This presents an alternative approach to replace the use of standard diffusion processes (for example a Brownian motion or Wiener process). \nWe go on to study the method using the Bohmian approach to quantum mechanics. We consider how to interpret the equations for pseudo-Hermitian systems, and highlight the crucial role played by the quantum potential function.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudo-Hermiticity and Removing Brownian Motion From Finance\",\"authors\":\"William Hicks\",\"doi\":\"10.2139/ssrn.3684508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we apply the methods of quantum mechanics to the study of the financial markets. Specifically, we discuss the Pseudo-Hermiticity of the Hamiltonian operators associated to the typical partial differential equations of Mathematical Finance (such as the Black-Scholes equation) and how this relates to the non-arbitrage condition. \\nWe propose that one can use a Schrodinger equation to derive the probabilistic behaviour of the financial market, and discuss the benefits of doing so. This presents an alternative approach to replace the use of standard diffusion processes (for example a Brownian motion or Wiener process). \\nWe go on to study the method using the Bohmian approach to quantum mechanics. We consider how to interpret the equations for pseudo-Hermitian systems, and highlight the crucial role played by the quantum potential function.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3684508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3684508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这篇文章中,我们将量子力学的方法应用于金融市场的研究。具体来说,我们讨论了与数学金融的典型偏微分方程(如Black-Scholes方程)相关的哈密顿算子的伪厄米性,以及它与非套利条件的关系。我们建议人们可以使用薛定谔方程来推导金融市场的概率行为,并讨论这样做的好处。这提出了一种替代标准扩散过程(例如布朗运动或维纳过程)的方法。我们继续用量子力学的波西米亚方法来研究这种方法。我们考虑了如何解释伪厄米系统的方程,并强调了量子势函数所起的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-Hermiticity and Removing Brownian Motion From Finance
In this article we apply the methods of quantum mechanics to the study of the financial markets. Specifically, we discuss the Pseudo-Hermiticity of the Hamiltonian operators associated to the typical partial differential equations of Mathematical Finance (such as the Black-Scholes equation) and how this relates to the non-arbitrage condition. We propose that one can use a Schrodinger equation to derive the probabilistic behaviour of the financial market, and discuss the benefits of doing so. This presents an alternative approach to replace the use of standard diffusion processes (for example a Brownian motion or Wiener process). We go on to study the method using the Bohmian approach to quantum mechanics. We consider how to interpret the equations for pseudo-Hermitian systems, and highlight the crucial role played by the quantum potential function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信