高斯衰落信道下基于非合作博弈的无线传感器网络能量有效分配

Suryaia Rahman, M. Rashid, M. Z. Alam
{"title":"高斯衰落信道下基于非合作博弈的无线传感器网络能量有效分配","authors":"Suryaia Rahman, M. Rashid, M. Z. Alam","doi":"10.1109/ICAEE48663.2019.8975691","DOIUrl":null,"url":null,"abstract":"In this paper, we solve the energy optimization of Lloyd quantizer (LQ) based Robust iterative water-filling (LQ-RIWF) for a multiple-input multiple-output (MIMO) channel by minimizing the gradient of the local cost function (LCF) of each node by canceling the cross-interference through assigning a nulling set. This technique is known as LCF-LQ-RIWF. Our goal of this work is to design a non-cooperative game for an arbitrary Gaussian channel while guaranteeing convergence into an Nash Equilibrium (NE) state at minimum energy constraint. We first present the LQ-RIWF power allocation in NE state, and then extend the result for LCF-LQ-RIWF with global power constraint. We compare the sum-rate performance of LCF-LQ-RIWF with conventional power allocation techniques. A sufficient condition for the convergence of the proposed algorithm in NE state is derived and verified under the assumption that each node approaches a common water level based on instantaneous channel gain. Based on the theoretical investigation, we have carried out Matlab simulations and the results show that our proposed power allocation provides better performance compare to general sub-optimal techniques.","PeriodicalId":138634,"journal":{"name":"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient energy allocation in wireless sensor networks based on non-cooperative game over Gaussian fading channel\",\"authors\":\"Suryaia Rahman, M. Rashid, M. Z. Alam\",\"doi\":\"10.1109/ICAEE48663.2019.8975691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we solve the energy optimization of Lloyd quantizer (LQ) based Robust iterative water-filling (LQ-RIWF) for a multiple-input multiple-output (MIMO) channel by minimizing the gradient of the local cost function (LCF) of each node by canceling the cross-interference through assigning a nulling set. This technique is known as LCF-LQ-RIWF. Our goal of this work is to design a non-cooperative game for an arbitrary Gaussian channel while guaranteeing convergence into an Nash Equilibrium (NE) state at minimum energy constraint. We first present the LQ-RIWF power allocation in NE state, and then extend the result for LCF-LQ-RIWF with global power constraint. We compare the sum-rate performance of LCF-LQ-RIWF with conventional power allocation techniques. A sufficient condition for the convergence of the proposed algorithm in NE state is derived and verified under the assumption that each node approaches a common water level based on instantaneous channel gain. Based on the theoretical investigation, we have carried out Matlab simulations and the results show that our proposed power allocation provides better performance compare to general sub-optimal techniques.\",\"PeriodicalId\":138634,\"journal\":{\"name\":\"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE48663.2019.8975691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE48663.2019.8975691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对多输入多输出(MIMO)信道,通过分配零集消除交叉干扰,使各节点的局部代价函数(LCF)梯度最小化,从而解决基于Lloyd量化器(LQ)的鲁棒迭代充水(LQ- riwf)的能量优化问题。这种技术被称为LCF-LQ-RIWF。我们的目标是为任意高斯信道设计一个非合作博弈,同时保证在最小能量约束下收敛到纳什均衡(NE)状态。首先给出了NE状态下LQ-RIWF的功率分配,然后将结果推广到全局功率约束的LCF-LQ-RIWF。我们比较了LCF-LQ-RIWF与传统功率分配技术的和速率性能。在基于瞬时通道增益的各节点趋近于一个共同水位的假设下,推导并验证了该算法在NE状态下收敛的充分条件。在理论研究的基础上,我们进行了Matlab仿真,结果表明,与一般的次优分配技术相比,我们提出的功率分配方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient energy allocation in wireless sensor networks based on non-cooperative game over Gaussian fading channel
In this paper, we solve the energy optimization of Lloyd quantizer (LQ) based Robust iterative water-filling (LQ-RIWF) for a multiple-input multiple-output (MIMO) channel by minimizing the gradient of the local cost function (LCF) of each node by canceling the cross-interference through assigning a nulling set. This technique is known as LCF-LQ-RIWF. Our goal of this work is to design a non-cooperative game for an arbitrary Gaussian channel while guaranteeing convergence into an Nash Equilibrium (NE) state at minimum energy constraint. We first present the LQ-RIWF power allocation in NE state, and then extend the result for LCF-LQ-RIWF with global power constraint. We compare the sum-rate performance of LCF-LQ-RIWF with conventional power allocation techniques. A sufficient condition for the convergence of the proposed algorithm in NE state is derived and verified under the assumption that each node approaches a common water level based on instantaneous channel gain. Based on the theoretical investigation, we have carried out Matlab simulations and the results show that our proposed power allocation provides better performance compare to general sub-optimal techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信