电影情感建模的无监督人工神经网络

W. Claster, Dinh Quoc Hung, S. Shanmuganathan
{"title":"电影情感建模的无监督人工神经网络","authors":"W. Claster, Dinh Quoc Hung, S. Shanmuganathan","doi":"10.1109/CICSyN.2010.23","DOIUrl":null,"url":null,"abstract":"Sentiment mining aims at extracting features on which users express their opinions in order to determine the user’s sentiment towards the query object. Movie sentiment in Twitter provides an excellent base upon which to evaluate sentiment mining methodologies both because of the pervasiveness of discussions devoted to movie topics and because of the brevity of expression induced by twitter's 140 word limitation. In this paper we explore movie sentiment expressed in Twitter microblogs. A multi-knowledge based approach is proposed using, Self-Organizing Maps and movie knowledge in order to model opinion across a multi-dimensional sentiment space. We develop a visual model to express this taxonomy of sentiment vocabulary and then apply this model in test data. The results show the effectiveness of the proposed visualization in mining sentiment in the domain of Twitter tweets.","PeriodicalId":358023,"journal":{"name":"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Unsupervised Artificial Neural Nets for Modeling Movie Sentiment\",\"authors\":\"W. Claster, Dinh Quoc Hung, S. Shanmuganathan\",\"doi\":\"10.1109/CICSyN.2010.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment mining aims at extracting features on which users express their opinions in order to determine the user’s sentiment towards the query object. Movie sentiment in Twitter provides an excellent base upon which to evaluate sentiment mining methodologies both because of the pervasiveness of discussions devoted to movie topics and because of the brevity of expression induced by twitter's 140 word limitation. In this paper we explore movie sentiment expressed in Twitter microblogs. A multi-knowledge based approach is proposed using, Self-Organizing Maps and movie knowledge in order to model opinion across a multi-dimensional sentiment space. We develop a visual model to express this taxonomy of sentiment vocabulary and then apply this model in test data. The results show the effectiveness of the proposed visualization in mining sentiment in the domain of Twitter tweets.\",\"PeriodicalId\":358023,\"journal\":{\"name\":\"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICSyN.2010.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICSyN.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

情感挖掘旨在提取用户表达意见的特征,以确定用户对查询对象的情感。Twitter上的电影情感为评估情感挖掘方法提供了一个很好的基础,这既是因为关于电影主题的讨论无处不在,也是因为Twitter的140字限制导致表达的简洁。本文探讨了Twitter微博中表达的电影情感。提出了一种基于多知识的方法,利用自组织地图和电影知识在多维情感空间中对意见进行建模。我们开发了一个可视化模型来表达这种情感词汇分类,然后将该模型应用于测试数据。结果表明,所提出的可视化方法在挖掘Twitter推文领域的情感方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Artificial Neural Nets for Modeling Movie Sentiment
Sentiment mining aims at extracting features on which users express their opinions in order to determine the user’s sentiment towards the query object. Movie sentiment in Twitter provides an excellent base upon which to evaluate sentiment mining methodologies both because of the pervasiveness of discussions devoted to movie topics and because of the brevity of expression induced by twitter's 140 word limitation. In this paper we explore movie sentiment expressed in Twitter microblogs. A multi-knowledge based approach is proposed using, Self-Organizing Maps and movie knowledge in order to model opinion across a multi-dimensional sentiment space. We develop a visual model to express this taxonomy of sentiment vocabulary and then apply this model in test data. The results show the effectiveness of the proposed visualization in mining sentiment in the domain of Twitter tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信