k均值彩色图像量化的确定性与随机初始化

H. Palus, M. Frackiewicz
{"title":"k均值彩色图像量化的确定性与随机初始化","authors":"H. Palus, M. Frackiewicz","doi":"10.1109/SITIS.2019.00020","DOIUrl":null,"url":null,"abstract":"We present six methods for initialising the K-means clustering algorithm used for color image quantization. We test these initialization methods on a few quantization levels and on 24 color images contained in the Kodak image dataset. In the vast majority of the examined cases the best results were obtained for the initialization of KM++. The evaluation of the results was carried out using the MSE and several new perceptual quality indices.","PeriodicalId":301876,"journal":{"name":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deterministic vs. Random Initializations for K-Means Color Image Quantization\",\"authors\":\"H. Palus, M. Frackiewicz\",\"doi\":\"10.1109/SITIS.2019.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present six methods for initialising the K-means clustering algorithm used for color image quantization. We test these initialization methods on a few quantization levels and on 24 color images contained in the Kodak image dataset. In the vast majority of the examined cases the best results were obtained for the initialization of KM++. The evaluation of the results was carried out using the MSE and several new perceptual quality indices.\",\"PeriodicalId\":301876,\"journal\":{\"name\":\"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2019.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了六种初始化用于彩色图像量化的k均值聚类算法的方法。我们在柯达图像数据集中的24张彩色图像上测试了这些初始化方法。在绝大多数所检查的情况下,k++的初始化获得了最好的结果。利用MSE和几个新的感知质量指标对结果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic vs. Random Initializations for K-Means Color Image Quantization
We present six methods for initialising the K-means clustering algorithm used for color image quantization. We test these initialization methods on a few quantization levels and on 24 color images contained in the Kodak image dataset. In the vast majority of the examined cases the best results were obtained for the initialization of KM++. The evaluation of the results was carried out using the MSE and several new perceptual quality indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信