用特征选择方法预测不同治疗下乳腺癌的预后

H. Pham, L. Rueda, A. Ngom
{"title":"用特征选择方法预测不同治疗下乳腺癌的预后","authors":"H. Pham, L. Rueda, A. Ngom","doi":"10.1145/3107411.3108226","DOIUrl":null,"url":null,"abstract":"Gene expression data have been used in many researches to help reveal the underlying mechanism of many diseases. In this study, we applied feature selection techniques on breast cancer patients in the METABRIC Study to predict whether patients will be disease free or not, under different treatments. Our models for prediction are of high performance, thus, the genes in those models might help reveal the mechanism of the disease, and these potential biomarkers can become targets for new therapies.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Breast Cancer Outcome under Different Treatments by Feature Selection Approaches\",\"authors\":\"H. Pham, L. Rueda, A. Ngom\",\"doi\":\"10.1145/3107411.3108226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene expression data have been used in many researches to help reveal the underlying mechanism of many diseases. In this study, we applied feature selection techniques on breast cancer patients in the METABRIC Study to predict whether patients will be disease free or not, under different treatments. Our models for prediction are of high performance, thus, the genes in those models might help reveal the mechanism of the disease, and these potential biomarkers can become targets for new therapies.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因表达数据已被用于许多研究,以帮助揭示许多疾病的潜在机制。在本研究中,我们将METABRIC研究中的特征选择技术应用于乳腺癌患者,以预测患者在不同治疗下是否无病。我们的预测模型是高性能的,因此,这些模型中的基因可能有助于揭示疾病的机制,这些潜在的生物标志物可以成为新疗法的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Breast Cancer Outcome under Different Treatments by Feature Selection Approaches
Gene expression data have been used in many researches to help reveal the underlying mechanism of many diseases. In this study, we applied feature selection techniques on breast cancer patients in the METABRIC Study to predict whether patients will be disease free or not, under different treatments. Our models for prediction are of high performance, thus, the genes in those models might help reveal the mechanism of the disease, and these potential biomarkers can become targets for new therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信