{"title":"NP最小化类的近似性质","authors":"Phokion G. Kolaitis, Madhukar N. Thakur","doi":"10.1109/SCT.1991.160280","DOIUrl":null,"url":null,"abstract":"The authors introduce a novel approach to the logical definability of NP optimization problems by focusing on the expressibility of feasible solutions. They show that in this framework first-order sentences capture exactly all polynomially bounded optimization problems. They also show that, assuming P not=NP, it is an undecidable problem to determine whether a given first-order sentence defines an approximable optimization problem. They then isolate a syntactically defined class of NP minimization problems that contains the min set cover problem and has the property that every problem in it has a logarithmic approximation algorithm. They conclude by giving a machine-independent characterization of the NP=co-NP problem in terms of logical expressibility of the max clique problem.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Approximation properties of NP minimization classes\",\"authors\":\"Phokion G. Kolaitis, Madhukar N. Thakur\",\"doi\":\"10.1109/SCT.1991.160280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors introduce a novel approach to the logical definability of NP optimization problems by focusing on the expressibility of feasible solutions. They show that in this framework first-order sentences capture exactly all polynomially bounded optimization problems. They also show that, assuming P not=NP, it is an undecidable problem to determine whether a given first-order sentence defines an approximable optimization problem. They then isolate a syntactically defined class of NP minimization problems that contains the min set cover problem and has the property that every problem in it has a logarithmic approximation algorithm. They conclude by giving a machine-independent characterization of the NP=co-NP problem in terms of logical expressibility of the max clique problem.<<ETX>>\",\"PeriodicalId\":158682,\"journal\":{\"name\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"volume\":\"381 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1991.160280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation properties of NP minimization classes
The authors introduce a novel approach to the logical definability of NP optimization problems by focusing on the expressibility of feasible solutions. They show that in this framework first-order sentences capture exactly all polynomially bounded optimization problems. They also show that, assuming P not=NP, it is an undecidable problem to determine whether a given first-order sentence defines an approximable optimization problem. They then isolate a syntactically defined class of NP minimization problems that contains the min set cover problem and has the property that every problem in it has a logarithmic approximation algorithm. They conclude by giving a machine-independent characterization of the NP=co-NP problem in terms of logical expressibility of the max clique problem.<>