基于增强数据集的深度卷积神经网络孟加拉手写体字符和数字识别及其应用

Hasibul Huda, Md. Ariful Islam Fahad, Moonmoon Islam, A. Das
{"title":"基于增强数据集的深度卷积神经网络孟加拉手写体字符和数字识别及其应用","authors":"Hasibul Huda, Md. Ariful Islam Fahad, Moonmoon Islam, A. Das","doi":"10.1109/imcom53663.2022.9721634","DOIUrl":null,"url":null,"abstract":"Bangla Handwritten digit and character recognition, a complex computer vision problem that is important for the Bengali language as the progress in this segment for the Bengali language is slow. We used two popular datasets, BanglaLekha-Isolated and NumbtaDB, for both digits and characters and used a Convolutional neural network to train our model. We augmented our dataset using a shifting method and ran multiple experiments on vowels, digits, and characters. The result is 96.42% average accuracy on BanglaLekha augmented. Our model also achieved 98.92% accuracy on the NumtaDB dataset. We used our model to sketch up two models, License plate recognition and Smart E-learning application. We used connected component analysis in License plate recognition that helped us to extract essential segments of the license plate. We used Keras as a TensorFlow backend in our research. Bangla OCR research is ongoing and will get better over time with better datasets and learning techniques.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bangla Handwritten Character and Digit Recognition Using Deep Convolutional Neural Network on Augmented Dataset and Its Applications\",\"authors\":\"Hasibul Huda, Md. Ariful Islam Fahad, Moonmoon Islam, A. Das\",\"doi\":\"10.1109/imcom53663.2022.9721634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bangla Handwritten digit and character recognition, a complex computer vision problem that is important for the Bengali language as the progress in this segment for the Bengali language is slow. We used two popular datasets, BanglaLekha-Isolated and NumbtaDB, for both digits and characters and used a Convolutional neural network to train our model. We augmented our dataset using a shifting method and ran multiple experiments on vowels, digits, and characters. The result is 96.42% average accuracy on BanglaLekha augmented. Our model also achieved 98.92% accuracy on the NumtaDB dataset. We used our model to sketch up two models, License plate recognition and Smart E-learning application. We used connected component analysis in License plate recognition that helped us to extract essential segments of the license plate. We used Keras as a TensorFlow backend in our research. Bangla OCR research is ongoing and will get better over time with better datasets and learning techniques.\",\"PeriodicalId\":367038,\"journal\":{\"name\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/imcom53663.2022.9721634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/imcom53663.2022.9721634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

手写数字和字符识别,这是一个复杂的计算机视觉问题,对孟加拉语来说很重要,因为孟加拉语在这一领域的进展缓慢。我们使用了两个流行的数据集,BanglaLekha-Isolated和numtadb,用于数字和字符,并使用卷积神经网络来训练我们的模型。我们使用移位方法增强了我们的数据集,并对元音、数字和字符进行了多次实验。在banglalha增强上的平均准确率为96.42%。我们的模型在NumtaDB数据集上也达到了98.92%的准确率。我们利用该模型设计了车牌识别和智能电子学习两个模型。我们在车牌识别中使用了连接分量分析,帮助我们提取车牌的基本部分。在我们的研究中,我们使用Keras作为TensorFlow后端。孟加拉国的OCR研究正在进行中,随着时间的推移,数据集和学习技术会越来越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bangla Handwritten Character and Digit Recognition Using Deep Convolutional Neural Network on Augmented Dataset and Its Applications
Bangla Handwritten digit and character recognition, a complex computer vision problem that is important for the Bengali language as the progress in this segment for the Bengali language is slow. We used two popular datasets, BanglaLekha-Isolated and NumbtaDB, for both digits and characters and used a Convolutional neural network to train our model. We augmented our dataset using a shifting method and ran multiple experiments on vowels, digits, and characters. The result is 96.42% average accuracy on BanglaLekha augmented. Our model also achieved 98.92% accuracy on the NumtaDB dataset. We used our model to sketch up two models, License plate recognition and Smart E-learning application. We used connected component analysis in License plate recognition that helped us to extract essential segments of the license plate. We used Keras as a TensorFlow backend in our research. Bangla OCR research is ongoing and will get better over time with better datasets and learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信