基于并行模拟退火和进化选择的矢量量化高效码本设计

V. Delport
{"title":"基于并行模拟退火和进化选择的矢量量化高效码本设计","authors":"V. Delport","doi":"10.1109/DSPWS.1996.555500","DOIUrl":null,"url":null,"abstract":"Vector quantization is a technique that has been investigated and used in speech and image coding for data compression. A hybrid system of parallel simulated annealing and evolutionary selection (PSAES) is introduced to codebook design in vector quantization. It is examined for the vector space of low-order DCT coefficients and compared with local and near global optimization techniques. In addition an improved version of a fuzzy codebook design called fuzzy-to-hard-c-mean algorithm is proposed.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient codebook design in vector quantization by parallel simulated annealing and evolutionary selection\",\"authors\":\"V. Delport\",\"doi\":\"10.1109/DSPWS.1996.555500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector quantization is a technique that has been investigated and used in speech and image coding for data compression. A hybrid system of parallel simulated annealing and evolutionary selection (PSAES) is introduced to codebook design in vector quantization. It is examined for the vector space of low-order DCT coefficients and compared with local and near global optimization techniques. In addition an improved version of a fuzzy codebook design called fuzzy-to-hard-c-mean algorithm is proposed.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矢量量化是一种已被研究并用于语音和图像编码的数据压缩技术。将并行模拟退火与进化选择的混合系统引入到矢量量化的码本设计中。研究了低阶DCT系数的向量空间,并与局部和近全局优化技术进行了比较。此外,提出了一种改进的模糊码本设计,称为模糊到硬c均值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient codebook design in vector quantization by parallel simulated annealing and evolutionary selection
Vector quantization is a technique that has been investigated and used in speech and image coding for data compression. A hybrid system of parallel simulated annealing and evolutionary selection (PSAES) is introduced to codebook design in vector quantization. It is examined for the vector space of low-order DCT coefficients and compared with local and near global optimization techniques. In addition an improved version of a fuzzy codebook design called fuzzy-to-hard-c-mean algorithm is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信