视频监控中的人群分析综述

Ankit Tomar, Santosh Kumar, Bhasker Pant
{"title":"视频监控中的人群分析综述","authors":"Ankit Tomar, Santosh Kumar, Bhasker Pant","doi":"10.1109/DASA54658.2022.9765008","DOIUrl":null,"url":null,"abstract":"Crowd behavior investigation in images/videos is an important task applied in areas such as people counting, density estimation, emotion recognition, motion detection, and flow analysis, etc. The researchers devoted an excellent quality of work to deal with public issues such as crowd control, traffic monitoring, urban planning, vehicle counting in real-time; however, humanity did not get much success in handling these issues due to the limited cost of energy and time. For evaluation metrics, we need a year-wise analysis of used datasets, publications methodologies, and their performance, which is expected to yield good predictions and conclusions. Therefore, in this work, we have systematically and comprehensively revisited five year studies that conducted crowd analysis in video using deep learning techniques to make more effective research development and progress. We have got some new future directions from some of the prestigious survey works, which is a novel aspect of this study, that would provide potential and reliable solutions for investigating crowd behaviour in videos.","PeriodicalId":231066,"journal":{"name":"2022 International Conference on Decision Aid Sciences and Applications (DASA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Crowd Analysis in Video Surveillance: A Review\",\"authors\":\"Ankit Tomar, Santosh Kumar, Bhasker Pant\",\"doi\":\"10.1109/DASA54658.2022.9765008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd behavior investigation in images/videos is an important task applied in areas such as people counting, density estimation, emotion recognition, motion detection, and flow analysis, etc. The researchers devoted an excellent quality of work to deal with public issues such as crowd control, traffic monitoring, urban planning, vehicle counting in real-time; however, humanity did not get much success in handling these issues due to the limited cost of energy and time. For evaluation metrics, we need a year-wise analysis of used datasets, publications methodologies, and their performance, which is expected to yield good predictions and conclusions. Therefore, in this work, we have systematically and comprehensively revisited five year studies that conducted crowd analysis in video using deep learning techniques to make more effective research development and progress. We have got some new future directions from some of the prestigious survey works, which is a novel aspect of this study, that would provide potential and reliable solutions for investigating crowd behaviour in videos.\",\"PeriodicalId\":231066,\"journal\":{\"name\":\"2022 International Conference on Decision Aid Sciences and Applications (DASA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Decision Aid Sciences and Applications (DASA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASA54658.2022.9765008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Decision Aid Sciences and Applications (DASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASA54658.2022.9765008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

图像/视频中的人群行为调查是一项重要的任务,应用于人群计数、密度估计、情绪识别、运动检测和流量分析等领域。研究人员致力于处理公共问题,如人群控制、交通监控、城市规划、车辆实时计数;然而,由于精力和时间的限制,人类在处理这些问题上并没有取得多大的成功。对于评估指标,我们需要对使用的数据集、出版物方法及其性能进行年度分析,这有望产生良好的预测和结论。因此,在这项工作中,我们系统地、全面地重新审视了使用深度学习技术在视频中进行人群分析的五年研究,以取得更有效的研究发展和进展。我们从一些著名的调查工作中得到了一些新的未来方向,这是本研究的一个新颖方面,这将为调查视频中的人群行为提供潜在和可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crowd Analysis in Video Surveillance: A Review
Crowd behavior investigation in images/videos is an important task applied in areas such as people counting, density estimation, emotion recognition, motion detection, and flow analysis, etc. The researchers devoted an excellent quality of work to deal with public issues such as crowd control, traffic monitoring, urban planning, vehicle counting in real-time; however, humanity did not get much success in handling these issues due to the limited cost of energy and time. For evaluation metrics, we need a year-wise analysis of used datasets, publications methodologies, and their performance, which is expected to yield good predictions and conclusions. Therefore, in this work, we have systematically and comprehensively revisited five year studies that conducted crowd analysis in video using deep learning techniques to make more effective research development and progress. We have got some new future directions from some of the prestigious survey works, which is a novel aspect of this study, that would provide potential and reliable solutions for investigating crowd behaviour in videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信