矩阵乘法加速的域扩展和三线性聚合、统一和消去

V. Pan
{"title":"矩阵乘法加速的域扩展和三线性聚合、统一和消去","authors":"V. Pan","doi":"10.1109/SFCS.1979.17","DOIUrl":null,"url":null,"abstract":"The acceleration of matrix multiplication MM, is based on the combination of the method of algebraic field extension due to D. Bini, M. Capovani, G. Lotti, F. Romani and S. Winograd and of trilinear aggregating, uniting and canceling due to the author. A fast algorithm of O(N2.7378) complexity for N × N matrix multiplication is derived. With A. Schönhage's Theorem about partial and total MM, our approach gives the exponent 2.6054 by the price of a serious increase of the constant.","PeriodicalId":311166,"journal":{"name":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Field extension and trilinear aggregating, uniting and canceling for the acceleration of matrix multiplications\",\"authors\":\"V. Pan\",\"doi\":\"10.1109/SFCS.1979.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acceleration of matrix multiplication MM, is based on the combination of the method of algebraic field extension due to D. Bini, M. Capovani, G. Lotti, F. Romani and S. Winograd and of trilinear aggregating, uniting and canceling due to the author. A fast algorithm of O(N2.7378) complexity for N × N matrix multiplication is derived. With A. Schönhage's Theorem about partial and total MM, our approach gives the exponent 2.6054 by the price of a serious increase of the constant.\",\"PeriodicalId\":311166,\"journal\":{\"name\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1979.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1979.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

矩阵乘法的加速是基于D. Bini, M. Capovani, G. Lotti, F. Romani和S. Winograd的代数域扩展方法和作者的三线性聚集、统一和抵消方法的结合。推导了一个复杂度为0 (N2.7378)的N × N矩阵乘法快速算法。利用a . Schönhage关于偏MM和总MM的定理,我们的方法给出了指数2.6054,该指数是常数大幅增加的价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field extension and trilinear aggregating, uniting and canceling for the acceleration of matrix multiplications
The acceleration of matrix multiplication MM, is based on the combination of the method of algebraic field extension due to D. Bini, M. Capovani, G. Lotti, F. Romani and S. Winograd and of trilinear aggregating, uniting and canceling due to the author. A fast algorithm of O(N2.7378) complexity for N × N matrix multiplication is derived. With A. Schönhage's Theorem about partial and total MM, our approach gives the exponent 2.6054 by the price of a serious increase of the constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信