学习分析与学习设计的协同作用:学生成果的系统回顾

M. Blumenstein
{"title":"学习分析与学习设计的协同作用:学生成果的系统回顾","authors":"M. Blumenstein","doi":"10.18608/jla.2020.73.3","DOIUrl":null,"url":null,"abstract":"The field of learning analytics (LA) has seen a gradual shift from purely data-driven approaches to more holistic views of improving student learning outcomes through data-informed learning design (LD). Despite the growing potential of LA in higher education (HE), the benefits are not yet convincing to the practitioner, in particular aspects of aligning LA data with LD toward desired learning outcomes. This review presents a systematic evaluation of effect sizes reported in 38 key studies in pursuit of effective LA approaches to measuring student learning gain for the enhancement of HE pedagogy and delivery. Large positive effects on student outcomes were found in LDs that fostered socio-collaborative and independent learning skills. Recent trends in personalization of learner feedback identified a need for the integration of student-idiosyncratic factors to improve the student experience and academic outcomes. Finally, key findings are developed into a new three-level framework, the LA Learning Gain Design (LALGD) model, to align meaningful data capture with pedagogical intentions and their learning outcomes. Suitable for various settings — face to face, blended, or fully online — the model contributes to data-informed learning and teaching pedagogies in HE.","PeriodicalId":145357,"journal":{"name":"J. Learn. Anal.","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Synergies of Learning Analytics and Learning Design: A Systematic Review of Student Outcomes\",\"authors\":\"M. Blumenstein\",\"doi\":\"10.18608/jla.2020.73.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of learning analytics (LA) has seen a gradual shift from purely data-driven approaches to more holistic views of improving student learning outcomes through data-informed learning design (LD). Despite the growing potential of LA in higher education (HE), the benefits are not yet convincing to the practitioner, in particular aspects of aligning LA data with LD toward desired learning outcomes. This review presents a systematic evaluation of effect sizes reported in 38 key studies in pursuit of effective LA approaches to measuring student learning gain for the enhancement of HE pedagogy and delivery. Large positive effects on student outcomes were found in LDs that fostered socio-collaborative and independent learning skills. Recent trends in personalization of learner feedback identified a need for the integration of student-idiosyncratic factors to improve the student experience and academic outcomes. Finally, key findings are developed into a new three-level framework, the LA Learning Gain Design (LALGD) model, to align meaningful data capture with pedagogical intentions and their learning outcomes. Suitable for various settings — face to face, blended, or fully online — the model contributes to data-informed learning and teaching pedagogies in HE.\",\"PeriodicalId\":145357,\"journal\":{\"name\":\"J. Learn. Anal.\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Learn. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18608/jla.2020.73.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Learn. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18608/jla.2020.73.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

学习分析(LA)领域已经从纯粹的数据驱动方法逐渐转变为通过数据知情学习设计(LD)改善学生学习成果的更全面的观点。尽管LA在高等教育(HE)中的潜力越来越大,但其好处尚不能让从业者信服,特别是在将LA数据与LD结合以实现期望的学习结果方面。本文对38项关键研究的效应量进行了系统评估,以寻求有效的LA方法来衡量学生的学习收益,从而提高高等教育的教学方法和教学效果。在培养社会协作和独立学习技能的ld中,发现对学生成绩有很大的积极影响。个性化学习者反馈的最新趋势表明,需要整合学生特质因素,以改善学生体验和学业成果。最后,将主要发现发展成一个新的三级框架,即LA学习增益设计(LALGD)模型,以使有意义的数据捕获与教学意图及其学习成果保持一致。该模型适用于各种环境-面对面,混合或完全在线-有助于数据为基础的高等教育学习和教学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergies of Learning Analytics and Learning Design: A Systematic Review of Student Outcomes
The field of learning analytics (LA) has seen a gradual shift from purely data-driven approaches to more holistic views of improving student learning outcomes through data-informed learning design (LD). Despite the growing potential of LA in higher education (HE), the benefits are not yet convincing to the practitioner, in particular aspects of aligning LA data with LD toward desired learning outcomes. This review presents a systematic evaluation of effect sizes reported in 38 key studies in pursuit of effective LA approaches to measuring student learning gain for the enhancement of HE pedagogy and delivery. Large positive effects on student outcomes were found in LDs that fostered socio-collaborative and independent learning skills. Recent trends in personalization of learner feedback identified a need for the integration of student-idiosyncratic factors to improve the student experience and academic outcomes. Finally, key findings are developed into a new three-level framework, the LA Learning Gain Design (LALGD) model, to align meaningful data capture with pedagogical intentions and their learning outcomes. Suitable for various settings — face to face, blended, or fully online — the model contributes to data-informed learning and teaching pedagogies in HE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信