{"title":"基于进化策略的监督机器学习算法训练优化(EStoTimeSMLAs)","authors":"Matthias Lermer, Christoph Reich, D. Abdeslam","doi":"10.1109/ACMLC58173.2022.00011","DOIUrl":null,"url":null,"abstract":"Evolutionary strategy is increasingly used for optimization in various machine learning problems. It can scale very well, even to high dimensional problems, and its ability to globally self optimize in flexible ways provides new and exciting opportunities when combined with more recent machine learning methods. This paper describes a novel approach for the optimization of models with a data driven evolutionary strategy. The optimization can directly be applied as a preprocessing step and is therefore independent of the machine learning algorithm used. The experimental analysis of six different use cases show that, on average, better results are attained than without evolutionary strategy. Furthermore it is shown, that the best individual models are also achieved with the help of evolutionary strategy. The six different use cases were of different complexity which reinforces the idea that the approach is universal and not depending on specific use cases.","PeriodicalId":375920,"journal":{"name":"2022 5th Asia Conference on Machine Learning and Computing (ACMLC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evolutionary Strategy Based Training Optimization of Supervised Machine Learning Algorithms (EStoTimeSMLAs)\",\"authors\":\"Matthias Lermer, Christoph Reich, D. Abdeslam\",\"doi\":\"10.1109/ACMLC58173.2022.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary strategy is increasingly used for optimization in various machine learning problems. It can scale very well, even to high dimensional problems, and its ability to globally self optimize in flexible ways provides new and exciting opportunities when combined with more recent machine learning methods. This paper describes a novel approach for the optimization of models with a data driven evolutionary strategy. The optimization can directly be applied as a preprocessing step and is therefore independent of the machine learning algorithm used. The experimental analysis of six different use cases show that, on average, better results are attained than without evolutionary strategy. Furthermore it is shown, that the best individual models are also achieved with the help of evolutionary strategy. The six different use cases were of different complexity which reinforces the idea that the approach is universal and not depending on specific use cases.\",\"PeriodicalId\":375920,\"journal\":{\"name\":\"2022 5th Asia Conference on Machine Learning and Computing (ACMLC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th Asia Conference on Machine Learning and Computing (ACMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACMLC58173.2022.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Asia Conference on Machine Learning and Computing (ACMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACMLC58173.2022.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Evolutionary Strategy Based Training Optimization of Supervised Machine Learning Algorithms (EStoTimeSMLAs)
Evolutionary strategy is increasingly used for optimization in various machine learning problems. It can scale very well, even to high dimensional problems, and its ability to globally self optimize in flexible ways provides new and exciting opportunities when combined with more recent machine learning methods. This paper describes a novel approach for the optimization of models with a data driven evolutionary strategy. The optimization can directly be applied as a preprocessing step and is therefore independent of the machine learning algorithm used. The experimental analysis of six different use cases show that, on average, better results are attained than without evolutionary strategy. Furthermore it is shown, that the best individual models are also achieved with the help of evolutionary strategy. The six different use cases were of different complexity which reinforces the idea that the approach is universal and not depending on specific use cases.