{"title":"基于系统误差建模的近似神经网络有效精度恢复","authors":"Cecilia De la Parra, A. Guntoro, Akash Kumar","doi":"10.1145/3394885.3431533","DOIUrl":null,"url":null,"abstract":"Approximate Computing is a promising paradigm for mitigating the computational demands of Deep Neural Networks (DNNs), by leveraging DNN performance and area, throughput or power. The DNN accuracy, affected by such approximations, can be then effectively improved through retraining. In this paper, we present a novel methodology for modelling the approximation error introduced by approximate hardware in DNNs, which accelerates retraining and achieves negligible accuracy loss. To this end, we implement the behavioral simulation of several approximate multipliers and model the error generated by such approximations on pre-trained DNNs for image classification on CIFAR10 and ImageNet. Finally, we optimize the DNN parameters by applying our error model during DNN retraining, to recover the accuracy lost due to approximations. Experimental results demonstrate the efficiency of our proposed method for accelerated retraining (11× faster for CIFAR10 and 8× faster for ImageNet) for full DNN approximation, which allows us to deploy approximate multipliers with energy savings of up to 36% for 8-bit precision DNNs with an accuracy loss lower than 1%.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Accuracy Recovery in Approximate Neural Networks by Systematic Error Modelling\",\"authors\":\"Cecilia De la Parra, A. Guntoro, Akash Kumar\",\"doi\":\"10.1145/3394885.3431533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Computing is a promising paradigm for mitigating the computational demands of Deep Neural Networks (DNNs), by leveraging DNN performance and area, throughput or power. The DNN accuracy, affected by such approximations, can be then effectively improved through retraining. In this paper, we present a novel methodology for modelling the approximation error introduced by approximate hardware in DNNs, which accelerates retraining and achieves negligible accuracy loss. To this end, we implement the behavioral simulation of several approximate multipliers and model the error generated by such approximations on pre-trained DNNs for image classification on CIFAR10 and ImageNet. Finally, we optimize the DNN parameters by applying our error model during DNN retraining, to recover the accuracy lost due to approximations. Experimental results demonstrate the efficiency of our proposed method for accelerated retraining (11× faster for CIFAR10 and 8× faster for ImageNet) for full DNN approximation, which allows us to deploy approximate multipliers with energy savings of up to 36% for 8-bit precision DNNs with an accuracy loss lower than 1%.\",\"PeriodicalId\":186307,\"journal\":{\"name\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3394885.3431533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Accuracy Recovery in Approximate Neural Networks by Systematic Error Modelling
Approximate Computing is a promising paradigm for mitigating the computational demands of Deep Neural Networks (DNNs), by leveraging DNN performance and area, throughput or power. The DNN accuracy, affected by such approximations, can be then effectively improved through retraining. In this paper, we present a novel methodology for modelling the approximation error introduced by approximate hardware in DNNs, which accelerates retraining and achieves negligible accuracy loss. To this end, we implement the behavioral simulation of several approximate multipliers and model the error generated by such approximations on pre-trained DNNs for image classification on CIFAR10 and ImageNet. Finally, we optimize the DNN parameters by applying our error model during DNN retraining, to recover the accuracy lost due to approximations. Experimental results demonstrate the efficiency of our proposed method for accelerated retraining (11× faster for CIFAR10 and 8× faster for ImageNet) for full DNN approximation, which allows us to deploy approximate multipliers with energy savings of up to 36% for 8-bit precision DNNs with an accuracy loss lower than 1%.