鲁棒人类活动识别的统计降噪方法

Song-Mi Lee, Heeryon Cho, S. Yoon
{"title":"鲁棒人类活动识别的统计降噪方法","authors":"Song-Mi Lee, Heeryon Cho, S. Yoon","doi":"10.1109/MFI.2017.8170442","DOIUrl":null,"url":null,"abstract":"Noise and variability in accelerometer data collected using smart devices obscure accurate human activity recognition. In order to tackle the degradation of the triaxial accelerometer data caused by noise and individual user differences, we propose a statistical noise reduction method using total variation minimization to attenuate the noise mixed in the magnitude feature vector generated from triaxial accelerometer data. The experimental results using Random Forest classifier prove that our noise removal approach is constructive in significantly improving the human activity recognition performance.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Statistical noise reduction for robust human activity recognition\",\"authors\":\"Song-Mi Lee, Heeryon Cho, S. Yoon\",\"doi\":\"10.1109/MFI.2017.8170442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise and variability in accelerometer data collected using smart devices obscure accurate human activity recognition. In order to tackle the degradation of the triaxial accelerometer data caused by noise and individual user differences, we propose a statistical noise reduction method using total variation minimization to attenuate the noise mixed in the magnitude feature vector generated from triaxial accelerometer data. The experimental results using Random Forest classifier prove that our noise removal approach is constructive in significantly improving the human activity recognition performance.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

使用智能设备收集的加速度计数据中的噪声和可变性模糊了准确的人类活动识别。为了解决噪声和用户个体差异对三轴加速度计数据的影响,提出了一种利用总变差最小化的统计降噪方法,对三轴加速度计数据产生的幅值特征向量中混合的噪声进行衰减。使用随机森林分类器的实验结果证明,我们的去噪方法对显著提高人体活动识别性能具有建设性意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical noise reduction for robust human activity recognition
Noise and variability in accelerometer data collected using smart devices obscure accurate human activity recognition. In order to tackle the degradation of the triaxial accelerometer data caused by noise and individual user differences, we propose a statistical noise reduction method using total variation minimization to attenuate the noise mixed in the magnitude feature vector generated from triaxial accelerometer data. The experimental results using Random Forest classifier prove that our noise removal approach is constructive in significantly improving the human activity recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信