基于神经预测的HMM语音识别系统的最大互信息训练

K. Hassanein, L. Deng, M. Elmasry
{"title":"基于神经预测的HMM语音识别系统的最大互信息训练","authors":"K. Hassanein, L. Deng, M. Elmasry","doi":"10.1109/NNSP.1992.253696","DOIUrl":null,"url":null,"abstract":"A corrective training scheme based on the maximum mutual information (MMI) criterion is developed for training a neural predictive-based HMM (hidden Markov model) speech recognition system. The performance of the system on speech recognition tasks when trained with this technique is compared to its performance when trained using the maximum likelihood (ML) criterion. Preliminary results obtained indicate the superiority of ML training over MMI training for predictive-based models. This result is in agreement with earlier findings in the literature regarding direct classification models.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum mutual information training of a neural predictive-based HMM speech recognition system\",\"authors\":\"K. Hassanein, L. Deng, M. Elmasry\",\"doi\":\"10.1109/NNSP.1992.253696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A corrective training scheme based on the maximum mutual information (MMI) criterion is developed for training a neural predictive-based HMM (hidden Markov model) speech recognition system. The performance of the system on speech recognition tasks when trained with this technique is compared to its performance when trained using the maximum likelihood (ML) criterion. Preliminary results obtained indicate the superiority of ML training over MMI training for predictive-based models. This result is in agreement with earlier findings in the literature regarding direct classification models.<<ETX>>\",\"PeriodicalId\":438250,\"journal\":{\"name\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1992.253696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对基于神经预测的隐马尔可夫模型语音识别系统,提出了一种基于最大互信息(MMI)准则的纠错训练方案。用该技术训练后的系统在语音识别任务上的性能与使用最大似然(ML)标准训练时的性能进行了比较。初步结果表明,在基于预测的模型中,ML训练优于MMI训练。这一结果与早期文献中关于直接分类模型的发现一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum mutual information training of a neural predictive-based HMM speech recognition system
A corrective training scheme based on the maximum mutual information (MMI) criterion is developed for training a neural predictive-based HMM (hidden Markov model) speech recognition system. The performance of the system on speech recognition tasks when trained with this technique is compared to its performance when trained using the maximum likelihood (ML) criterion. Preliminary results obtained indicate the superiority of ML training over MMI training for predictive-based models. This result is in agreement with earlier findings in the literature regarding direct classification models.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信