使用随机面孔的生物特征人脸识别

Elena Battini Sonmez, S. Albayrak, B. Sankur
{"title":"使用随机面孔的生物特征人脸识别","authors":"Elena Battini Sonmez, S. Albayrak, B. Sankur","doi":"10.1109/SIU.2010.5652682","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of the Compressive Sensing (CS) technique to the classification issue. In this context, CS is used as a means to probe the nonlinear manifold on which faces under various illumination effects reside. The scheme of randomly sampled faces (Randomfaces) with nearest neighbor classifier are compared with two classical feature extraction approaches, as Eigenfaces and Fisherfaces. It is shown that randomfaces outperform the eigenface approach in classifying faces under illumination disturbances and their performance approaches that of the Fisherfaces.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biometric face recognition using randomfaces\",\"authors\":\"Elena Battini Sonmez, S. Albayrak, B. Sankur\",\"doi\":\"10.1109/SIU.2010.5652682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of the Compressive Sensing (CS) technique to the classification issue. In this context, CS is used as a means to probe the nonlinear manifold on which faces under various illumination effects reside. The scheme of randomly sampled faces (Randomfaces) with nearest neighbor classifier are compared with two classical feature extraction approaches, as Eigenfaces and Fisherfaces. It is shown that randomfaces outperform the eigenface approach in classifying faces under illumination disturbances and their performance approaches that of the Fisherfaces.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5652682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5652682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了压缩感知(CS)技术在分类问题中的应用。在这种情况下,CS被用作探测非线性流形的手段,在非线性流形上,各种照明效果下的面都位于流形上。将随机采样人脸(Randomfaces)与两种经典特征提取方法(Eigenfaces和Fisherfaces)进行了比较。结果表明,随机人脸在光照干扰下的人脸分类性能优于特征人脸方法,其性能接近fisher人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric face recognition using randomfaces
This paper investigates the use of the Compressive Sensing (CS) technique to the classification issue. In this context, CS is used as a means to probe the nonlinear manifold on which faces under various illumination effects reside. The scheme of randomly sampled faces (Randomfaces) with nearest neighbor classifier are compared with two classical feature extraction approaches, as Eigenfaces and Fisherfaces. It is shown that randomfaces outperform the eigenface approach in classifying faces under illumination disturbances and their performance approaches that of the Fisherfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信