正交多项式在线天线瞬态分析中的应用

J. Laciki, Z. Raida
{"title":"正交多项式在线天线瞬态分析中的应用","authors":"J. Laciki, Z. Raida","doi":"10.1109/COMITE.2008.4569892","DOIUrl":null,"url":null,"abstract":"In this paper two kinds of orthogonal polynomials - weighted Laguerre and Hermite polynomials - are used as temporal basis functions for the approximation of the transient responses of wire structures. Numerical schemes with these polynomials are derived and their properties are compared on an analysis of straight wires of different lengths. The comparisons and investigations show that the scheme with Hermite polynomials requires the lower number of temporal basis functions for short responses than the scheme with Laguerre polynomials, and vice versa.","PeriodicalId":306289,"journal":{"name":"2008 14th Conference on Microwave Techniques","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Using Orthogonal Polynomials for Transient Analysis of Wire Antennas\",\"authors\":\"J. Laciki, Z. Raida\",\"doi\":\"10.1109/COMITE.2008.4569892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper two kinds of orthogonal polynomials - weighted Laguerre and Hermite polynomials - are used as temporal basis functions for the approximation of the transient responses of wire structures. Numerical schemes with these polynomials are derived and their properties are compared on an analysis of straight wires of different lengths. The comparisons and investigations show that the scheme with Hermite polynomials requires the lower number of temporal basis functions for short responses than the scheme with Laguerre polynomials, and vice versa.\",\"PeriodicalId\":306289,\"journal\":{\"name\":\"2008 14th Conference on Microwave Techniques\",\"volume\":\"2008 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 14th Conference on Microwave Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMITE.2008.4569892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 14th Conference on Microwave Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMITE.2008.4569892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用加权Laguerre多项式和Hermite多项式两种正交多项式作为时间基函数来逼近钢丝结构的瞬态响应。推导了这些多项式的数值格式,并通过对不同长度的直线材的分析,比较了它们的性质。比较和研究表明,对于短响应,Hermite多项式方案比Laguerre多项式方案所需的时间基函数数更少,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Using Orthogonal Polynomials for Transient Analysis of Wire Antennas
In this paper two kinds of orthogonal polynomials - weighted Laguerre and Hermite polynomials - are used as temporal basis functions for the approximation of the transient responses of wire structures. Numerical schemes with these polynomials are derived and their properties are compared on an analysis of straight wires of different lengths. The comparisons and investigations show that the scheme with Hermite polynomials requires the lower number of temporal basis functions for short responses than the scheme with Laguerre polynomials, and vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信